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Abstract

We calculate the neutral kaon mixing parameter BK in unquenched lattice QCD using asqtad-

improved staggered sea quarks and domain-wall valence quarks. We use the “2+1” flavor gauge

configurations generated by the MILC Collaboration, and simulate with multiple valence and sea

quark masses at two lattice spacings of a ≈ 0.12 fm and a ≈ 0.09 fm. We match the lattice determi-

nation of BK to the continuum value using the nonperturbative method of Rome-Southampton, and

extrapolate BK to the continuum and physical quark masses using mixed action chiral perturbation

theory. The “mixed-action” method enables us to control all sources of systematic uncertainty and

therefore to precisely determine BK ; we find a value of BMS,NDR
K (2GeV) = 0.527(6)(20), where the

first error is statistical and the second is systematic.
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I. INTRODUCTION

The kaon B-parameter (BK), which parameterizes the hadronic part of CP -violating neu-

tral kaon mixing, plays an important role in flavor-physics phenomenology. When combined

with an experimental measurement of indirect CP -violation in the kaon sector, ǫK , BK con-

strains the apex of the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Because ǫK

is known to sub-percent accuracy, this constraint is limited by the theoretical uncertainties

in several quantities, including BK . Physics beyond the standard model generically predicts

additional quark flavor-changing interactions and CP -violating phases. These will manifest

themselves as apparent inconsistencies between measurements that are predicted to be iden-

tical within the framework of the standard model. Thus precise experimental measurements

of quark-flavor changing weak-interaction processes are sensitive probes of new physics, pro-

vided that the corresponding theoretical calculations are also sufficiently precise. In this

work we calculate BK using lattice QCD with all sources of systematic uncertainty under

control. This result is needed to interpret the experimental measurement of ǫK as a con-

straint on the CKM unitarity triangle, and hence to constrain physics beyond the standard

model.

Because an accurate determination of BK is essential for flavor-physics phenomenology,

many lattice QCD calculations of BK have been done over the past decade, each improving

upon the previous one. The benchmark calculation by the JLQCD Collaboration contains

a thorough study of the quark mass and lattice spacing dependence [1]. Because it does

not include the effect of sea quark loops, however, the final result for BK has a quenching

uncertainty which is difficult to estimate. The HPQCD Collaboration eliminates this source

of error in BK by using dynamical staggered fermions at a single lattice spacing [2]. The

additional species of staggered quarks, referred to as “tastes”, however, complicate the

lattice-to-continuum operator matching procedure, and lead to a ∼ 20% systematic error in

BK due to neglected higher-order operators and mixing with operators specific to staggered

fermions that break flavor symmetry. The RBC and UKQCD Collaborations’ calculation

of BK contains the effects of three flavors of dynamical domain-wall fermions and employs

nonperturbative operator renormalization [3]. Although their result for BK has a ∼ 6% total

uncertainty, it relies on a single lattice spacing and an estimate of the size of discretization

errors based on the earlier quenched calculation in Ref. [4].
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Our mixed-action lattice QCD calculation combines domain-wall valence quarks and stag-

gered sea quarks, following the method of the LHP Collaboration [5]. We use the “2+1” fla-

vor asqtad-improved staggered lattices generated by the MILC Collaboration, which include

the effects of three light dynamical quarks [6]. These configurations are publicly available

with a large range of quark masses, lattice spacings, and volumes and allow for good control

over the systematic error from chiral and continuum extrapolation [7]. We generate domain-

wall valence quark propagators using the Chroma lattice QCD software package [8]. The

approximate chiral symmetry of domain-wall quarks simplifies both the extrapolations to

physical quark masses and zero lattice spacing and the lattice-to-continuum operator match-

ing. Because the mixed-action ∆S = 2 lattice operator used to calculate the BK matrix

element is composed of domain-wall valence quarks, which do not carry the taste quantum

number, it only mixes with other operators of wrong chirality (due to small residual chiral

symmetry breaking), not incorrect tastes. This makes the relevant mixed action chiral per-

turbation theory (MAχPT) more continuum-like than in the purely staggered case. There

is only one new parameter in the one-loop MAχPT expression for BK with respect to the

purely domain-wall case, and it can easily be determined from the staggered pseudoscalar

meson mass spectrum [7, 9]. Use of domain-wall valence quarks in the ∆S = 2 lattice

operator also makes the nonperturbative operator matching via the Rome-Southampton

method [10] as simple as in the purely domain-wall case. Thus the mixed action method

combines the advantages of staggered and domain-wall fermions without suffering from their

primary disadvantages and is well-suited to the calculation of BK .

The MILC gauge configurations make use of the rooting procedure to remove the ad-

ditional staggered quark species (tastes) from the calculation of the fermion determi-

nant. Although the “fourth-root trick” has not been proven correct, both theoretical ar-

guments [11, 12, 13, 14] and numerical simulations [15, 16, 17] support the validity of the

rooting procedure. Most of this evidence is summarized in reviews by Dürr, Sharpe, Kro-

nfeld, and Golterman [18, 19, 20, 21]. Given the wealth of evidence substantiating the

fourth-root trick, we work under the plausible assumption that the continuum limit of the

rooted staggered theory is QCD.

Our calculation ofBK relies upon the ability to correctly extrapolate to the physical quark

masses and zero lattice spacing using MAχPT [22], which describes the pseudo-Goldstone

boson sector of the mixed-action lattice theory. In Ref. [17] we have therefore performed
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a strong check of the ability of MAχPT to accurately describe the quark-mass and lattice-

spacing dependence of the isovector scalar correlator. The a0 correlator is particularly

sensitive to unitarity-violating discretization effects in the mixed-action theory because it

receives contributions from flavor-neutral two-meson intermediate states. At next-to-leading

order (NLO), the size and shape of these “bubble” contributions to the scalar correlator is

completely predicted within MAχPT [15], given knowledge of a few low-energy constants

that are easily determined in fits to pseudoscalar meson mass data. We find that, for all

valence-sea mass combinations on both the coarse and fine lattices, the MAχPT prediction

is in good quantitative agreement with the numerical lattice data, despite the numerically

large discretization effects due to the staggered sea sector. Thus we conclude that MAχPT

describes the dominant unitarity-violating effects in mixed-action lattice simulations. For

the case of most weak-matrix elements, including BK , NLO MAχPT predicts that unitarity-

violating discretization effects in 1-loop chiral logarithms are below a percent on the coarse

and fine MILC lattices [9]. This fact, in conjunction with our successful analysis of the

scalar correlator, substantiates the claim that we can use MAχPT to remove these effects

from BK and to precisely determine its value in the continuum.

We have also performed a more general check of our ability to control systematic errors

in our mixed-action numerical simulations by calculating the light pseudoscalar meson de-

cay constants, fπ and fK , and their ratio [23]. We use the same gauge configurations and

domain-wall valence quark masses as in the calculation of BK presented in this work. We

determine both fπ and fK with ∼ 3% accuracy, and their ratio with ∼ 2% accuracy. Given

the value of |Vud| from superallowed β-decay, our result for fπ is consistent with experiment.

Similarly, given the |Vus| determination from semileptonic kaon decays using non-lattice

theory, our result for fK is consistent with experiment. Our result for the ratio fK/fπ,

which is independent of the CKM matrix elements, is consistent with other more precise

lattice determinations [24, 25, 26]. Although our decay constant calculation does not check

the Rome-Southampton nonperturbative renormalization (NPR) procedure, it does test the

remaining ingredients in the calculation of BK , especially the chiral and continuum extrap-

olation using MAχPT. Therefore the successful calculation of the well-known quantities fπ

and fK bolsters confidence in the calculation of the weak matrix element BK presented in

this work.
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This paper is organized as follows. In Sec. II, we describe the details of our numerical

mixed-action lattice simulation; we present the actions and parameters used and describe

how the relevant 2-point and 3-point correlators are analyzed. Next, in Sec. III, we describe

two independent calculations of the renormalization factor ZBK
needed to match the lattice

matrix element to the continuum. We compute ZBK
using the nonperturbative Rome-

Southampton approach; this is used in our preferred determination of BK . We also compute

ZBK
to 1-loop in mean-field improved lattice perturbation theory to provide a cross-check

and aid in estimating the systematic error associated with the matching. In Sec. IV, we

describe the extrapolation of BK to the physical quark masses and the continuum using

NLO MAχPT supplemented by higher-order analytic terms to allow an interpolation about

the strange quark mass. Next, in Sec. V, we present the systematic error budget for BK ,

describing each individual uncertainty in a separate subsection for clarity. Finally, in Sec. VI,

we compare our results to previous unquenched lattice determinations and to the preferred

values from the unitarity triangle analyses. We conclude by discussing the prospects for

improvement in our mixed-action lattice calculation and for its phenomenological impact on

the search for new physics.

II. LATTICE CALCULATION

In this section we describe the details of our numerical mixed-action lattice calculation.

We first present the valence and sea quark lattice actions and input parameters (such as

quark masses and lattice spacings) in Sec. IIA. Next, in Sec. II B, we present the 2-point and

3-point correlation functions needed to determine the unrenormalized lattice value of BK .

We give the valence quark propagator source wavefunctions and boundary conditions. We

also describe the method used to extract BK from a ratio of 3-point and 2-point functions,

and show example correlated plateau fits with jackknife errors.

A. Actions and input parameters

We use the unquenched lattices generated by the MILC Collaboration for our numerical

lattice calculation of BK , which include the effects of three dynamical flavors of asqtad-

improved staggered fermions [27]. Because the MILC configurations are available at several
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TABLE I: Parameters of the MILC improved staggered gauge configurations and domain-wall

valence quark propagators used to calculate the unrenormalized lattice value of BK . Columns

one and two list the approximate lattice spacings and lattice volumes (in lattice spacing units).

Columns three and four show the nominal up/down (ml) and strange quark (mh) masses in the

sea, along with the corresponding pseudoscalar taste pion mass. Columns five and six list our

partially quenched valence quark masses (mx), along with our lightest available domain-wall pion

mass. Column seven shows the number of configurations analyzed on each ensemble.

sea sector valence sector

a(fm)
(

L
a

)3
× T

a aml/amh amπ amx amπ Nconf.

0.09 403 × 96 0.0031/0.031 0.10538(06) 0.004, 0.0186, 0.046 0.0999(12) 150

0.09 283 × 96 0.0062/0.0186 0.14619(14) 0.0062, 0.0124, 0.0186, 0.046 0.1212(17) 160

0.09 283 × 96 0.0062/0.031 0.14789(18) 0.0062, 0.0124, 0.0186, 0.046 0.1222(12) 210

0.09 283 × 96 0.0124/0.031 0.20635(18) 0.0062, 0.0124, 0.0186, 0.046 0.1216(11) 198

0.12 243 × 64 0.005/0.05 0.15971(20) 0.007, 0.02, 0.03, 0.05, 0.065 0.1718(11) 216

0.12 203 × 64 0.007/0.05 0.18891(20) 0.01, 0.02, 0.03, 0.04, 0.05, 0.065 0.1968(08) 268

0.12 203 × 64 0.01/0.03 0.22357(19) 0.01, 0.02, 0.03, 0.05, 0.065 0.1946(18) 160

0.12 203 × 64 0.01/0.05 0.22447(17) 0.01, 0.02, 0.03, 0.05, 0.065 0.1989(08) 220

0.12 203 × 64 0.02/0.05 0.31125(16) 0.01, 0.03, 0.05, 0.065 0.1949(13) 117

light quark masses and lattice spacings [6, 28], they allow us to have good control over

the both the chiral extrapolation in the sea sector and the continuum extrapolation. We

calculate BK on both the “coarse” (a ≈ 0.12 fm) and “fine” (a ≈ 0.09 fm) MILC ensembles,

which have physical volumes ranging from approximately (2.5 – 3 fm)3. For each ensemble,

the masses of the up and down sea quarks are degenerate; our lightest dynamical mass is

approximately a tenth of the physical strange quark. For most of our ensembles, the mass of

the dynamical strange quark is close to its physical value. At each lattice spacing, however,

we have data on one ensemble with an unphysically light strange sea quark in order to better

constrain the strange sea quark mass dependence and aid in the chiral extrapolation. The

left-hand side of Table I shows the parameters of the MILC gauge configurations used to

calculate BK .
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We construct the 2-point and 3-point correlation functions needed to determine BK us-

ing domain-wall valence quark propagators [29, 30]. The approximate chiral symmetry of

domain-wall fermions simplifies both the nonperturbative determination of the renormal-

ization coefficient, ZBK
, and the extrapolation of BK to physical quark masses and the

continuum; these advantages will be discussed in greater detail in Secs. III and IV, respec-

tively. We compute the domain-wall propagators using the Chroma software system for

lattice QCD [8]. We use the same input parameters as the LHP Collaboration [5]; this

allows us to check simple quantities such as the pion masses and the residual quark mass.

We first smear the MILC lattices using the standard hypercubic blocking (HYP) parame-

ters given in Ref. [31] in order to reduce the size of explicit chiral symmetry breaking and

proximity to the Aoki phase [32]. On both the coarse and fine ensembles we simulate with

a domain-wall height of M5=1.7 and a fifth dimension of length Ls=16. For each sea quark

ensemble, we calculate BK at several valence quark masses; this allows us both to extrap-

olate the numerical lattice data to the physical up/down quark mass and to interpolate to

the physical strange quark mass. Our lightest valence quark mass is chosen to be as light

as possible while keeping finite-volume effects under control. Specifically, we restrict the

quantity mπL ∼> 3.5 to keep 1-loop MAχPT finite volume effects for BK below 1%. Thus

the mass of our lightest domain-wall pion is ∼ 280 MeV on the 2.5 fm ensembles, and ∼ 240

MeV on the 3.5 fm ensemble. The fifth column of Table I shows the bare domain-wall masses

used to calculate BK .

In most mixed staggered sea, domain-wall valence lattice simulations, the bare domain-

wall quark mass is tuned so that the mass of the domain-wall pion is equal to the mass of

the lightest staggered pion in the sea sector [5]. Although this procedure does not eliminate

unitarity-violating discretization effects in the mixed-action theory at nonzero lattice spac-

ing, tuning the domain-wall pion to one of the staggered pion masses allows one to approach

full QCD as the continuum limit is taken numerically, even for quantities for which mixed-

action chiral perturbation theory expressions do not exist or are not applicable. Fortunately,

for the case of BK , we can use MAχPT [9, 22] to properly account for and remove these

discretization errors in fits to quantities evaluated at multiple lattice spacings and valence

and sea quark masses. Thus we do not make any attempt to tune the bare domain-wall

quark masses in our lattice calculation.

In order to convert dimensionful quantities calculated in our mixed-action lattice simu-
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lations into physical units, we need the value of the lattice spacing, a, which we determine

by computing a known physical quantity that can be directly compared to experiment. Al-

though all of the coarse (or fine) MILC lattices have approximately the same lattice spacing,

slight variations exist due to the choice of simulation parameters in the gauge action. We

account for these differences by converting all of our data from lattice spacing units into

r1 units before performing any chiral fits. Because r1 is related to the force between static

quarks, r2
1F (r1) = 1.0 [33], this method has the advantage that the ratio r1/a can be deter-

mined precisely from a fit to the static quark potential [28, 34]. The absolute scale, r1, can

then be determined in several ways. In this work we use the scale r1 = 0.3108(15)(+26
−79) fm

to convert our simulation results into physical units. This value is obtained by combining

the recent MILC determination of r1fπ with the experimentally measured value of fπ [24].

We use an alternative determination of r1 from the Υ splitting [35, 36], r1 = 0.318(7) fm, in

order to estimate the systematic error due to the scale uncertainty.

B. Three-point correlation functions

BK parameterizes the nonperturbative QCD contribution to CP-violating neutral kaon

mixing. Kaon mixing occurs via electroweak box diagrams. Integrating out the heavy

intermediate W -bosons to isolate the hadronic contribution leads to the following ∆S = 2

operator in the effective Hamiltonian:

O∆S=2
K = [sγµ(1 − γ5)d][sγµ(1 − γ5)d], (1)

where we omit the color indices for simplicity. In order to ensure that the value of BK is

close to unity, BK is defined as a ratio:

BK ≡
〈K

0
|[sγµ(1 − γ5)d][sγµ(1 − γ5)d]|K

0〉
8
3
〈K

0
|sγµ(1 − γ5)d|0〉〈0|sγµ(1 − γ5)d|K0〉

, (2)

where the numerator is the desired ∆S = 2 matrix element, and the denominator is the

same matrix element as in the numerator evaluated in the vacuum saturation approximation.

Because the matrix element in the denominator is related to the kaon decay constant, Eq. (2)

is often simplified as

BK =
〈K

0
|O∆S=2

K ||K0〉
8
3
m2

Kf
2
K

. (3)
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In this work we calculate BK numerically from the following ratio of lattice correlation

functions:

Blat.
K =

L3

8
3

〈ψP (tsrc + T )O∆S=2
K (t) ψP (tsrc)

†〉

〈φA(t)ψP (tsrc)†〉〈φA(t)ψP (tsrc + T )†〉
, (4)

where T is the temporal extent of the lattice and we include the superscript “lat.” to em-

phasize that the quantity in Eq. (4) needs to be renormalized in order to recover BK in a

continuum regularization scheme. We fix the locations of the source and sink kaons in the

numerator 3-point function at tsrc and tsrc + T , respectively, and vary the position of the

four-quark operator, O∆S=2
K , over all time slices t in between. We use wall sources for our

kaons throughout the calculation, but use local sinks for both the four-quark operator in

the 3-point function and the axial-current operator in the 2-point functions:

ψP (t) =
∑

~x,~y

s(~x, t) γ5 d(~y, t), (5)

φA(t) =
∑

~x

s(~x, t)γ5γµd(~x, t). (6)

The volume factor L3 in the numerator of Eq. (4) accounts for the differing normalizations

of the wall sources and point sources used in the determination of Blat.
K .

For each domain-wall valence quark mass on a given MILC configuration, we compute

two Coulomb gauge-fixed wall-source propagators starting from the same lattice timeslice,

tsrc: one with periodic and another with antiperiodic boundary conditions in the temporal

direction. The spatial boundary conditions are always periodic. The Coulomb gauge-fixed

wall-source is used to reduce contamination from excited states. We then take symmetric

and antisymmetric linear combinations in order to produce forward- and backward-moving

propagators beginning at tsrc. We use these symmetrized propagators in the interpolating

operators ψ and φ in order to effectively double the number of lattice timeslices. This

ensures that finite-size effects due to pions circling the lattice in the temporal direction are

negligible. Using the same time slice for the source of the forward- and backward-moving

propagators also allows us to save a factor of two in computing time.1

In order to make the best use of our computing resources, we generate domain-wall quark

propagators on every fourth recorded MILC gauge configuration (typically every 20th or 24th

1 This method was suggested to us by N. Christ [37].
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trajectory) in order to reduce autocorrelation errors. Our earliest runs have propagators with

tsrc = 0, which we chose for simplicity. In order to take advantage of the large temporal

extent of the MILC lattices and further reduce autocorrelations, however, our later runs use

a randomly chosen tsrc. Although the two data sets are expected to have somewhat different

autocorrelation times, there is nothing a priori wrong with combining them in an ensemble

average.

Figure 1 shows a representative plateau fit on a coarse ensemble for Blat
K /(4L3) with a non-

degenerate kaon made up of a light quark with mass around ms/6 and a heavier quark with

mass close to ms. Figure 2 shows a similar plateau fit on a fine ensemble where the heavier

quark mass is again close to ms, and the light-quark mass is around ms/10. The confidence

levels of the fits are computed using the full correlation matrix in the minimization of χ2 in

order to assess the quality of the plateaus. The statistical errors in the fit are determined by

performing a separate fit to each single-elimination jackknife sample; the correlation matrix

is remade for each jackknife fit. Excellent fits to a constant are found, and the confidence

levels of the fits in Fig. 1 (CL = 0.71) and Fig. 2 (CL = 0.94) are typical of our numerical

data. Although our plateau region appears to be quite long by inspection, a correlated

fit requires a fit to a smaller span of the time extent so that the correlation matrix does

not become too large to resolve with our current statistics (∼ 150-270 configurations per

ensemble). Thus, we limit our plateau fits to ∼ 10-15 time slices. In practice, this is not

much of a limitation, since we fold our data in the time direction. Typical statistical errors

on the raw Blat
K lattice data are at the sub-percent level, with 1-2% errors on the points with

the lightest quark masses.

Autocorrelation errors were studied on the two longest runs on the coarse (aml/amh =

0.007/0.05) and fine (aml/amh = 0.0031/0.031) ensembles. These errors are investigated by

blocking the data before performing the single elimination jackknife estimate of the statistical

error. However, there is also a correction to the statistical error coming from the fact that

the correlation matrix is not known perfectly, but is determined approximately from the

data set for a given fit. It has been shown in Ref. [38] that a jackknife fit with an estimate

of the covariance matrix remade with each jackknife sample leads to a slight overestimate of

the variance. This correction to the statistical error is at the ∼ 5−10% level for our data set,

and tends to cancel the expected (and difficult to resolve) slight increase in the statistical

errors due to autocorrelations. Corrections to the statistical errors due to autocorrelations
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FIG. 1: Plateau fit to Blat
K /(4L3) on the coarse aml/amh = 0.007/0.05 ensemble. The legend

shows the non-degenerate pair of quark masses making up the kaon in the three-point correlation

function. The correlated χ2/dof and confidence level of the fit are given in the title.
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FIG. 2: Same as Figure 1 but on the fine aml/amh = 0.0031/0.031 ensemble.
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are at most a few percent. Given the rather small total correction to the statistical error

due to the combination of these effects, we do not adjust the errors “by hand” as input to

later (chiral and continuum extrapolation) fits. This correction to the statistical error due

is also a small fraction of our final total error, and can be neglected.

III. RENORMALIZATION OF THE ∆S = 2 OPERATOR

In this section we describe the calculation of the renormalization factor, ZBK
, which

is needed to match the lattice matrix element to the continuum. We present the result

renormalized in the MS scheme at 2 GeV. We determine ZBK
using two independent meth-

ods: lattice perturbation theory and the nonperturbative Rome-Southampton approach.

Although we use the nonperturbatively determined ZBK
to calculate our central value for

BK , the lattice perturbation theory calculation provides a valuable crosscheck on the non-

perturbative renormalization and an indication of the size of the systematic uncertainty on

the renormalization factor.

A. Lattice perturbation theory calculation of ZBK

In this subsection, we use lattice perturbation theory to match our lattice calculation of

BK to the MS scheme using naive dimensional regularization (NDR). Although naive lattice

perturbation theory appears to converge slowly, two main causes of this have been identified

in Ref. [39]. The first is that the bare gauge coupling is a poor expansion parameter, and the

second is that tadpole diagrams tend to have large coefficients. If a renormalized coupling is

used and one restricts oneself to quantities for which tadpole diagrams largely cancel, then

lattice perturbation theory appears to converge as well as continuum perturbation theory.

The difficulties with large tadpole corrections are present even in chiral fermion formulations,

where they are just as serious as in other formulations. We address this issue here.

In the case of domain-wall quarks, the domain-wall height M5 is additively renormalized,

and large tadpole corrections can appear. It has been shown that mean-field improvement is

then necessary to get correct results from lattice perturbation theory for domain-wall quarks

[40, 41, 42]. Our calculations do not suffer from large tadpole corrections because we use

HYP-smeared domain-wall quarks in our simulations. This HYP-smearing smoothes the
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gauge fields, and has the effect of dramatically reducing the tadpole contributions in lattice

perturbation theory for our simulation parameters. Thus, the difference between naive and

mean-field improved lattice perturbation theory in our renormalization of BK is small. Even

so, we adopt the correct mean-field improvement in all results presented here.

The renormalization factor matching the lattice calculation of BK to the MS scheme can

be written as [43]

ZBK
(µa) =

(1 − w2
0)

−2Z−2
w Z+(µa)

(1 − w2
0)

−2Z−2
w Z2

A(µa)
=
Z+(µa)

Z2
A(µa)

, (7)

where Z+ is the renormalization factor for the operator O∆S=2
K , ZA renormalizes the axial

current, w0 = 1−M5, and Zw is the quantum correction to the normalization factor 1−w2
0.

It is useful to define ZBK
in this way, since the tadpole and self-energy corrections cancel.

The renormalization factor contains the running of the operator from the lattice scale a−1

to the continuum scale µ. The Feynman rules needed for our particular lattice calculation

are given in Appendix A. In the MS scheme with NDR, we have [43]

ZMS,NDR
BK

(µa) = 1 +
αMS(q

∗)

4π

[
−4 ln(µa) −

11

3
+ 2 ln π2 +

2

3
(16π2)(IS − IV )

]
, (8)

with IS,V defined in Eq. (A37).

Given the cancellation of tadpoles in Eq. (7), the only effect of mean-field improvement

in the one-loop renormalization factor ZBK
is to shift the domain-wall height M5 →MMF

5 =

M5−4(1−u0), where u0 is the fourth-root of the plaquette. This shift would be appreciable

if not for the HYP smearing of the domain wall quarks, since u0 ≈ 0.87 on the MILC coarse

and fine lattices. However, for our calculation it is appropriate to take the HYP-smeared

plaquette in the mean-field improvement factor, and this leads to uMF,coarse
0 = 0.984 and

uMF,fine
0 = 0.987 and a significantly smaller shift in MMF

5 . The final result for ZBK
decreases

by only about one percent (at both coarse and fine lattice spacings) after adopting the

mean-field improvement.

We adopt the Brodsky, Lepage, and Mackenzie (BLM) scheme for setting the scale in the
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coupling αMS(q
∗) [44].2 The BLM prescription for obtaining q∗ is

ln[(aq∗)2] =

∫
d4k f(k) ln(k2)∫

d4k f(k)
, (9)

where f(k) is the one-loop integrand, and the numerator is the first log moment. Note that

throughout this section and in Appendix A, all momentum integrals run over −π ≤ kµ ≤ π,

with kµ in lattice units. This prescription for computing q∗ is well-defined for finite lattice

integrals. In the case of BK , however, where there is an anomalous dimension, the BLM

prescription needs to be modified. We follow the prescription introduced by C. Bernard et

al. [45], and discussed in detail by DeGrand [46]. A generic integral evaluated in the MS

scheme will take the following form:

IMS = 16π2

∫
d2ωk

(2π)2ω
(µ2)2ω 1

k2(k2 + λ2)
(A+Bǫ)

= A

{
1

ǫ
− γE + log(4π)

}
+ A log

µ2

λ2
+ A+B, (10)

where 2ω = 4 − 2ǫ is the dimension of the integral and where the term in curly brackets is

discarded to give a finite integral, IF
MS

. The log moment of the divergent part of the one-

loop expression must be handled with care. The log moments of the finite lattice integrals

IV and IS are straightforward to evaluate using Eq. (9), and are denoted I∗V and I∗S in

Table II. However, we need the log moment corresponding to the entire term in brackets

in Eq. (8), including the anomalous dimension. The log moment corresponding to the

anomalous dimension [the first three terms in brackets in Eq. (8)] can be defined as the log

moment of the following finite integral [46]

IF
MS

= AJ1 +BJ2, (11)

where the F stands for finite, and

J1 = 16π2

∫
d4k

(2π)4

[
1 − θ(π2 − k2)

(k2)2
−

1

(k2 + µ2)2

]
, (12)

J2 = 16π2

∫
d4k

(2π)4

[
1

k2(k2 + µ2)
−

1

(k2 + µ2)2

]
, (13)

2 We actually compute αV (q∗), the strong coupling constant in the V scheme, and exploit the fact that

α
MS

= αV to the order we are working. The scales used to determine the coupling in each scheme are

related by ln[(aq∗
V

)2] = ln[(aq∗
MS

)2] + 5/3 in the first order BLM prescription where only the first log

moment is required. The V scheme is defined with respect to the heavy-quark potential [39, 44].
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TABLE II: Computed values of ZBK
in the BLM prescription. The first column labels the approx-

imate lattice spacing in fm. The second column is the numerical evaluation of the integral IV , and

the third is that of the integral IS . The fourth and fifth columns are the first moments of IV and

IS , respectively. The sixth column is aq∗BLM , and the seventh column is ZMS,NDR
BK

(2GeV). Errors

from numerical approximation of the integrals are no more than one digit in the last displayed

decimal.

a (fm) IV IS I∗V I∗S aq∗BLM ZMS,NDR
BK

(2GeV)

0.12 0.0158 -0.0161 0.0336 -0.0150 1.56 0.909

0.09 0.0158 -0.0155 0.0336 -0.0154 1.42 0.955

where µ is the MS scale (in lattice units), and θ is the Heaviside step function. The values of

A and B for ZBK
in the MS, NDR scheme are −2 and −5/3, respectively. The log moment

of the one-loop expression for ZBK
can then be used to compute q∗ using

ln(aq∗)2 =
(IF

MS
)∗ + 2

3
(16π2)(I∗S − I∗V )

−4 ln(µa) − 11
3

+ 2 ln π2 + 2
3
(16π2)(IS − IV )

, (14)

where (IF
MS

)∗ signifies that the first log moment is taken in the momentum integrals appearing

in Eq. (11). The computed values for the integrals IV and IS, as well as their first log

moments, are given in Table II. The resulting q∗’s and the final values for ZMS,NDR
BK

are also

given. All integrals were evaluated numerically using the Mathematica package [47], and

results in Ref. [43] using the same action but without HYP-smearing were reproduced.

B. Nonperturbative determination of ZBK

1. Rome-Southampton method

We compute the renormalization coefficient for BK nonperturbatively in the RI/MOM

scheme devised by the Rome-Southampton group [10]. In this scheme, the simple renormal-

ization condition is that the renormalized n-point functions in Landau gauge are equal to

their tree-level values. Because the RI/MOM scheme is regularization-invariant, it is useful

for both perturbative or non-perturbative techniques. Thus it is well-suited to lattice QCD

simulations. Once ZBK
has been determined nonperturbatively in the RI/MOM scheme, it
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can easily be converted to the MS scheme and run to the scale µ = 2 GeV using continuum

perturbation theory.

The Rome-Southampton nonperturbative renormalization technique has already been

successfully applied to lattice QCD calculations of BK with domain wall valence and sea

quarks by the RBC and UKQCD Collaborations in Refs. [48, 49]. We can determine the

renormalization factor ZBK
in the same simple manner for our mixed-action lattice QCD

simulations because the properties of the mixing coefficients are largely determined by the

symmetries of the valence sector. In particular, errors of O(a) are suppressed by ∼ e−αLs .

Furthermore, mixings between the desired BK four-fermion operator and other operators of

incorrect chirality are suppressed due to the approximate chiral symmetry, as we show in

Appendix C.

Our primary goal is to determine the renormalization coefficient of the four-quark oper-

ator given in Eq. (1):

O∆S=2
K ≡ OV V +AA = [sγµ(1 − γ5)d][sγµ(1 − γ5)d],

where we now show explicitly the chirality of the operator. Because chiral symmetry is

slightly broken in our simulations, however, this operator can mix with other ∆S = 2

operators of different chiralities:

OV V −AA = [sγµ(1 − γ5)d][sγµ(1 + γ5)d], (15)

OSS±PP = [s(1 − γ5)d][s(1 ∓ γ5)d], (16)

OTT = [sσµν(1 − γ5)d][sσµν(1 − γ5)d]. (17)

Thus the renormalized BK operator in principle receives contributions from all of the above

operators, and is given in terms of bare lattice operators by

Oren
K =

∑

i

ZV V +AA,i O
0
i , (18)

where i ∈ {V V + AA, V V − AA, SS + PP, SS − PP, TT}. The theoretical arguments of

Ref. [49] suggest that the wrong chirality mixing coefficients should be of O[(amres)
2], and

our data is consistent with this expectation within statistical errors. Thus, despite the fact

that chiral perturbation theory predicts the corresponding B parameters of these operators

to diverge in the chiral limit [48, 50], their contributions to BK are negligible.
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In order to calculate ZBK
via the Rome-Southampton approach [10], we first compute

the 5 × 5 matrix

Mij = P̂j[Γ
latt
i ] , (19)

where Γlatt
i is the amputated four-point Green’s function in momentum space, i, j ∈ {V V +

AA, V V −AA, SS+PP, SS−PP, TT}, and the projector P̂j selects out the component with

chirality j. The details of this procedure are described thoroughly in Appendix B of Ref. [48].

We also compute the tree-level value of this matrix by setting all of the momentum-space

propagators in the amputated Green’s functions equal to the identity:

M tree
ij = P̂j[Γ

tree
i ] . (20)

We then impose the RI/MOM renormalization condition,

Zij

Z2
q

Mjk = M tree
ik , (21)

where Zq is the quark wavefunction renormalization factor, in order to obtain the quantity

Zij

Z2
q

= M tree
ik M−1

jk . (22)

The renormalization coefficients for the various four-fermion operators are then given by

Zij

Z2
A

=
Zij

Z2
q

(
Zq

ZA

)2

, (23)

where ZA is the renormalization factor for the axial current. For example, the dominant

contribution to the BK lattice operator renormalization comes from the diagonal mixing

coefficient:

ZBK
≡
ZV V +AA,V V +AA

Z2
A

=
ZV V +AA,V V +AA

Z2
q

(
Zq

ZA

)2

. (24)

In order to determine the four-fermion operator mixing coefficients using Eq. (23), we

also need the ratio Zq/ZA. Fortunately, the renormalization factors for the quark bilinears

can also be calculated in a simple manner using the Rome-Southampton method. The

renormalization coefficients relate the bare and renormalized quark bilinear operators in the

following manner:

[uΓd]ren = ZΓ[uΓd]0 . (25)

In order to determine ZΓ, we first compute the bare Green’s functions between off-shell

quarks in momentum space. We then amputate the Green’s function and separately project
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out the components with each chirality to obtain the bare vertex amplitudes:

ΛS =
1

12
Tr[Gamp

1 1] , (26)

ΛP =
1

12
Tr[Gamp

γ5
γ5] , (27)

ΛV =
1

48
Tr

[
∑

µ

Gamp
γµ

γµ

]
, (28)

ΛA =
1

48
Tr

[
∑

µ

Gamp
γµγ5

γ5γµ

]
, (29)

ΛT =
1

72
Tr

[
∑

µ<ν

Gamp
σµν

σνµ

]
. (30)

Finally, we impose the RI/MOM renormalization condition

Λi,ren =
Zi

Zq
Λi = 1 . (31)

The renormalization coefficients for the quark bilinears are then given by

Zi

Zq
=

1

Λi
. (32)

In the RI/MOM prescription, the four-fermion operator renormalization coefficients are

given as functions of the momenta in the amputated Green’s functions used to determine

Zij/Z
2
q , which are chosen to be identical for all four quarks in our computation of ZBK

.

We therefore need to extract ZBK
at a sufficiently high momentum that hadronic effects

are negligible and the momentum-dependence can be described by perturbation theory. We

cannot use too high a momentum, however, or lattice discretization errors will become large.

Thus use of the Rome-Southampton technique requires the existence of a momentum window

in which both hadronic effects and discretization errors can be neglected:

ΛQCD ≪ p≪ a−1 . (33)

In practice, however, we need to work in the region (ap)2>∼ 1 in order to avoid large violations

of chiral symmetry which we observe at low momenta. Fortunately, discretization effects in

the region of interest, p ≈ 2 GeV, are generally rather small and can be taken into account

by a simple linear fit in (ap)2, as discussed in Ref. [51]. This is the approach that we take

in the calculation of ZBK
in Sec. III B 3.
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2. Chiral symmetry breaking and ΛA − ΛV

Although the calculation of ZBK
only requires the renormalization factor for the axial

current, ZA, the vector and axial-vector current renormalization factors should be equal in

the chiral limit for sufficiently large momenta due to chiral symmetry:

ZA = ZV , (34)

or equivalently,

ΛA = ΛV . (35)

Thus we can take the average of these two quantities in order to reduce the statistical error

in Zq/ZA using the relationship

ΛA =
1

2
(ΛA + ΛV ) . (36)

In practice, however, ΛA 6= ΛV in the chiral limit for any value of the momentum in our

nonperturbative determination. Figure 3 shows the extrapolation of the quantity 2(ΛA −

ΛV )/(ΛA + ΛV ) on the coarse lattice to the chiral limit at p ≈ 2 GeV using a function that

is linear in both the valence and sea quark masses. This quantity provides an indication

of the amount of chiral symmetry breaking in the computation. At nonzero quark mass,

2(ΛA−ΛV )/(ΛA+ΛV ) can be as large as ∼ 1% in the momentum region (ap)2
∼> 1 that we are

using to extract ZBK
. The difference between ΛA and ΛV decreases towards the chiral limit,

as is expected, but never becomes consistent with zero. Figure 4 shows 2(ΛA−ΛV )/(ΛA+ΛV )

versus (ap)2 on the aml/amh = 0.007/0.05 coarse ensemble for the five available valence

quark masses and in the chiral limit. Again, it decreases in magnitude as expected at larger

momenta, but is never zero. We observe similar behavior on the fine lattice. This persistent

difference between ΛA and ΛV has also been observed and studied in detail by the RBC and

UKQCD collaborations [49, 51, 52], and can be attributed to several sources.

The first source is explicit chiral symmetry breaking due to the nonzero quark masses

used in simulations [49]. Use of the operator product expansion shows that ΛA and ΛV can

receive contributions proportional to

m2
q

p2
,

mq〈qq〉

p4
, (37)

at lowest order in 1/p2 [51]. Because these operators are proportional to mq, they explicitly

break chiral symmetry and need not contribute equally to ΛA and ΛV . The contribution of
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FIG. 3: Chiral extrapolation of 2(ΛA −ΛV )/(ΛA +ΛV ) on the coarse lattice at (ap)2 = 1.468 using

a linear function in mx and ml. Although only the data points with filled symbols were used in the

fit, the fit line does a reasonable job of describing the heavier data points that were not included.

The cyan error band shows the extrapolation/interpolation for points where the domain-wall pion

mass is tuned to equal the lightest (taste pseudoscalar) staggered pion mass.

the operators in Eq. (37) can be seen clearly in the data. As Fig. 4 shows, the difference

between ΛA and ΛV increases rapidly as the momentum approaches zero and decreases slowly

as the momentum becomes larger than ≈ 2 GeV. The contributions from the operators in

Eq. (37) can be removed by extrapolating to the chiral limit at fixed momentum. Figs. 3

and 4 show that, although this procedure does indeed reduce the splitting between ΛA and

ΛV , it does not eliminate the difference. Thus there must be additional sources of chiral

symmetry breaking, which we now discuss.

The next source is chiral symmetry breaking due to the use of a finite Ls. Theoreti-

cal arguments suggest, however, that this would lead to errors that are much smaller, of

O((amres)
2) ∼ 10−6 in our numerical simulations [49, 52]. This would produce a negligible

difference between ΛA and ΛV , and cannot account for the size of the difference that we
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FIG. 4: The quantity 2(ΛA − ΛV )/(ΛA + ΛV ) versus (ap)2 on the aml/amh = 0.007/0.05 coarse

ensemble for several valence quark masses and in the chiral limit amx = aml = 0.

observe in the data.

A more significant source of chiral symmetry breaking that does not vanish in the chiral

limit is the choice of kinematics used to compute both Zij/Z
2
q and Λi. As in the standard

RI/MOM prescription, we are using “exceptional momenta” configurations in which there

is no momentum transferred between the initial and final states, or more precisely

pi = pf ≡ p , (38)

where pi,f are the momenta of the initial and final states. It was shown in Ref. [49] that

this, unfortunately, leads to contributions to ΛA − ΛV of the form

〈qqqq〉

p2
. (39)

Because this operator is not proportional to the quark mass, it does not vanish in the chiral

limit at fixed momentum. This contribution can be removed by performing the nonpertur-

bative renormalization calculation at non-exceptional kinematics, in which the sum of any
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FIG. 5: The quantity 2(ΛA−ΛV )/(ΛA+ΛV ) versus (ap)2 computed using non-exceptional momenta

on the aml/amh = 0.007/0.05 coarse ensemble for several valence quark masses and in the chiral

limit amx = aml = 0.

subset of external momenta is nonzero. In this case we have

p2
i = p2

f = (pi − pf )
2 ≡ p2 , (40)

but pi 6= pf . In order to check that this is indeed the source of the difference between

ΛA and ΛV in our data, we have also computed 2(ΛA − ΛV )/(ΛA + ΛV ) at non-exceptional

kinematics; the results are shown in Fig. 5. Although the statistical errors are not as small,

the results in the chiral limit are consistent with zero for sufficiently large values of (ap)2.

For the calculation of ZBK
in this work, we use exceptional kinematics, despite the result-

ing chiral symmetry breaking. This is because the continuum perturbation theory needed to

convert the result from the RI/MOM scheme to the MS scheme has not yet been calculated

for non-exceptional kinematics.3 We therefore include the difference between ΛA and ΛV as

3 The expressions needed to convert the quark bilinears from the RI/MOM scheme to the MS scheme have
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a source of systematic uncertainty in ZBK
.

3. Nonperturbative renormalization factor calculation

We now present the nonperturbative determination of ZBK
, which we compute from the

quantity
ZV V +AA,V V +AA

Z2
q

(
ΛA + ΛV

2

)2

(41)

using the method of Rome-Southampton. Table III shows the parameters used in generating

the NPR lattice data set. We have several valence and sea quark mass combinations on both

the coarse and fine lattices in order to allow an extrapolation of ZBK
to the chiral limit. For

those ensembles that are listed as “blocked” in the table, we computed ZBK
on every sixth

trajectory and blocked the data in groups of four in order to reduce autocorrelations. On

those ensembles for which the data was not blocked, we computed ZBK
only on every 24th

trajectory.

Because we must extrapolate ZBK
to the chiral limit in both the valence and sea quark

sectors, on the coarse lattice we have generated data on three ensembles at the nominal

strange quark mass (amh = 0.05) and on one ensemble with a lighter than physical strange

sea quark mass (amh = 0.03). At our current level of statistics the results for ZBK
on the

aml/amh = 0.01/0.05 and aml/amh = 0.01/0.03 coarse ensembles are consistent. Because

we do not observe any dependence on the strange sea quark mass in our data, we fit our data

assuming only a dependence on the light sea quark mass to determine the central value of

ZBK
. We use an alternative fit that includes strange sea quark mass dependence to estimate

the systematic error associated with extrapolating the strange sea quark mass to the chiral

limit.

We first extrapolate ZBK
using a polynomial function in the valence and sea quark masses:

fnsea,nval
(χval, χsea; p

2) = Z
RI/MOM
BK

(p2) +
nsea∑

i=1

Ci,sea(p
2)χi

sea +

nval∑

i=1

Ci,val(p
2)χi

val , (42)

recently been computed to one-loop order for non-exceptional kinematics by Sturm et al. in Ref. [53].
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TABLE III: Lattice QCD data used in the nonperturbative renormalization of BK . For those

configurations that were blocked, ZBK
was computed on every 6th configuration and blocked in

groups of 4. For those configurations that were not blocked, ZBK
was computed on every 24th

configuration.

a(fm)
(

L
a

)3
× T

a aml/amh amx Nconf. blocked?

0.09 283 × 96 0.0062/0.031 0.0119, 0.0171, 0.0287, 0.04 387 no

0.09 283 × 96 0.0093/0.031 0.0287 251 no

0.09 283 × 96 0.0124/0.031 0.0287 381 no

0.12 203 × 64 0.007/0.05 0.01, 0.02, 0.033, 0.038, 0.056 836 yes

0.12 203 × 64 0.01/0.05 0.01, 0.02, 0.033, 0.038, 0.056 540 yes

0.12 203 × 64 0.02/0.05 0.01, 0.02, 0.033, 0.038, 0.056 484 yes

0.12 203 × 64 0.01/0.03 0.01, 0.02, 0.03 81 no

where

χsea =
2µstag

(4πfπ)2
(2ml) , (43)

χval =
2µdw

(4πfπ)2
[2(mx +mres)] , (44)

are dimensionless ratios < 1, and the parameters µstag and µdw are obtained from tree-level

MAχPT fits to the pseudoscalar meson masses. In order to determine the preferred fit

ansatz, we independently increase nsea and nval until the correlated confidence level of the fit

no longer increases significantly. We find that this occurs when nsea = 1 and nval = 2. We

use the fits with additional terms to estimate the systematic uncertainty due to the choice

of fit function.

Figures 6 and 7 show the chiral extrapolation of ZBK
on the coarse and fine lattices

at p2 ≈ (2 GeV)2 using a fit function linear in the light sea quark mass and quadratic in

the valence quark mass. Although this extrapolation is nominally at “fixed (ap)2”, this is

not quite true. This is because, although all of the coarse (or fine) MILC ensembles are

generated with approximately the same lattice spacing, there are slight fluctuations in the

lattice spacing from ensemble to ensemble. Thus data on different ensembles with the same

value of (ap)2 do not correspond to precisely the same physical momentum. We convert our
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FIG. 6: Chiral extrapolation of Z
RI/MOM
BK

on the coarse lattice at (ap)2 = 1.468. Note that the

fit lines for the aml/amh = 0.01/0.05 and aml/amh = 0.01/0.03 ensembles are identical because

we have not included any strange sea quark mass dependence in the fit function. The cyan band

shows the extrapolation along the trajectory mval
π = msea

π .

data into r1 units using the value of r1/a determined on each ensemble before performing

the chiral extrapolation, so that everything is in the same units. Fortunately, the variation

in r1 leads to only a slight variation in the momentum-squared, of ∼ 0.1%. Because this is

even smaller than the statistical errors in our data points, the resulting systematic error can

be safely neglected.

Next we attempt to remove discretization errors in ZBK
due to the fact that we are

extracting ZBK
at momenta that are of O(a−1). Following the same procedure as in Ref. [49],

we use the continuum 1-loop perturbation theory expressions in Eqs. (B5)–(B8) to convert

Z
RI/MOM
BK

to ZSI
BK

. This is shown in Fig. 8 (Fig. 9) for the coarse (fine) lattice. Although the

quantity ZSI
BK

should be scale-invariant, we observe that ZSI
BK

in fact has an approximately

linear dependence upon (ap)2 in the region of interest. We believe that this scale-dependence

is primarily from lattice artefacts that can be removed by performing a linear extrapolation
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FIG. 7: Chiral extrapolation of Z
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(p2) on the fine lattice at (ap)2 = 0.744. The cyan band

shows the extrapolation along the trajectory mval
π = msea

π .

in (ap)2 . We therefore fit the data to the form

A +B(ap)2 (45)

and interpret the intercept A as the true ZSI
BK

. We extrapolate ZSI
BK

to its true value as

shown in Figs. 8 and 9 using the momentum range 2 GeV ∼< p ∼< 2.5 GeV. This choice

satisfies the criterion p≫ ΛQCD needed to avoid hadronic effects. Specifically, for the coarse

data, we fit within 1.5 < (ap)2 < 2.3 and for the fine data we fit within 0.8 < (ap)2 < 1.2.

Variations of these fit regions do not alter the final results significantly. We obtain

ZSI,coarse
BK

= 1.2822(29) ,

ZSI,fine
BK

= 1.3033(93) ,

where the errors are statistical only. We note that some of the scale-dependence in ZSI
BK

may

in fact be due to the lack of higher-order terms in the matching factor. We therefore account

for this and other errors due to the truncation of perturbation theory in the systematic error

budget for ZBK
.
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FIG. 8: Linear-in-(ap)2 extrapolation of ZSI
BK

on the coarse lattice to remove lattice artefacts using

the fit range 1.5 < (ap)2 < 2.3. The data points used in the fit are denoted by the filled circles and

the true value of ZSI
BK

obtained at (ap)2 = 0 is denoted by the star.

Finally, we convert ZSI
BK

to ZMS
BK

and run it to 2 GeV again using Eqs. (B5)–(B8). We

obtain

ZMS,coarse
BK

(2 GeV) = 0.9339(21) ,

ZMS,fine
BK

(2 GeV) = 0.9493(68) ,

where the errors are statistical only. We estimate the systematic uncertainties in

ZMS
BK

(2 GeV) later in Sec. VD.

IV. DETERMINATION OF BK

In this section we describe the extrapolation of BK to physical quark masses and the

continuum. In Sec. IVA, we present the expression for BK at next-to-leading order (NLO)

in MAχPT and describe those features that are most relevant for the chiral-continuum
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FIG. 9: Linear-in-(ap)2 extrapolation of ZSI
BK

on the fine lattice to remove lattice artefacts using

the fit range 0.8 < (ap)2 < 1.2. The data points used in the fit are denoted by the filled circles and

the true value of ZSI
BK

obtained at (ap)2 = 0 is denoted by the star.

extrapolation. We then discuss the details of the chiral-continuum extrapolation procedure

in Sec. IVB.

A. BK at NLO in MAχPT

We first review the tree-level mass relations for light pseudoscalar mesons in MAχPT since

they are useful in understanding the leading-order lattice-spacing contributions to mixed-

action numerical simulations [22]. In a mixed-action theory one can have mesons composed

of two sea quarks, two valence quarks, or one of each. At tree-level in MAχPT, discretization

effects lead to different additive shifts to the masses of the three types of mesons. These

mass-shifts are the only new parameters as compared to the continuum at this order, and

their values have all been determined for our choice of mixed-action simulation parameters.

The tree-level mass-shifts on both the coarse and fine MILC lattices are given in Table IV.
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TABLE IV: Tree-level mass-shifts on the coarse and fine MILC lattices for our choice of mixed-

action simulation parameters. The taste-singlet mass-splitting, ∆I , is independent of the valence

sector [7], while the residual quark mass, mres, and mixed meson mass-splitting, ∆mix, both depend

upon the choice of HYP-smearing [17]. Errors shown are statistical only.

sea sector valence sector mixed sector

a(fm) r2
1a

2∆I r1mres r2
1a

2∆mix

0.12 0.537(15) 0.0044(1) 0.207(16)

0.09 0.206(17) 0.0016(2) 0.095(20)

In the sea sector of the mixed action theory, each flavor of staggered quark comes in

four species, or “tastes”; consequently, each flavor of staggered pseudoscalar meson comes in

sixteen tastes. In the continuum, these tastes are identical and are related by an SU(4) sym-

metry [27]. At nonzero lattice spacing, however, discretization effects split the degeneracies

among the sixteen pseudoscalar meson tastes [54]:

m2
ss′,t = µstag(ms +ms′) + a2∆t, (46)

where s and s′ are the staggered quark flavors, µstag is a regularization-dependent continuum

low-energy constant, and ∆t is the mass-splitting of a pion with taste t. At leading-order in

staggered χPT (SχPT), a residual SO(4) taste symmetry ensures that the mass-splittings

are identical for pions in the same SO(4)-irrep: P, V, A, T, I [54]. An exact U(1)A symmetry

protects the taste pseudoscalar meson from receiving a mass-shift to all-orders in SχPT,

implying that ∆P = 0.

At NLO in the mixed-action theory, the only nonzero staggered mass-splitting that is

relevant is that of the taste-singlet, ∆I [22]. This is because the domain-wall valence quarks

do not carry the taste quantum number; therefore mixed valence-sea four-fermion operators

must contain two domain-wall quarks and two taste-singlet staggered quarks in order to be

overall taste-invariant. The mass-splitting ∆I has been calculated by the MILC Collabora-

tion on both the coarse and fine MILC lattices [7], and is given in Table IV. Because the

parameter ∆I is known, we reduce the number of free parameters in the chiral and continuum

extrapolation of BK by fixing ∆I to the values in Table IV. The mass-splitting ∆I turns out

to be the largest of the taste-splittings, and comparable to the taste-Goldstone pion mass on
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the coarse MILC lattices, so the taste-singlet sea-sea mesons are quite heavy on the coarse

lattices. Because the mass-splittings arise from discretization effects, however, they become

smaller as the lattice spacing decreases. Specifically, the staggered taste-splittings scale as

O(α2
sa

2) since the Asqtad staggered action is O(a2)-improved. Thus a2∆I is already more

than a factor of two smaller on the fine MILC lattices than on the coarse.

In the valence sector of the mixed-action theory, domain-wall quarks receive an additive

contribution to their mass from explicit chiral symmetry breaking [29, 30]:

m2
vv′ = µdw(mv +mv′ + 2mres), (47)

where v and v′ are the domain-wall quark flavors and mres is the residual quark mass. The

size of mres parameterizes the amount of chiral symmetry breaking in the valence sector,

and is controlled by the length of the fifth dimension. We have determined the value of mres

in our mixed-action simulations in a previous publication (Ref. [17]) and present the results

in Table IV. On the coarse MILC lattices, we find that the value of mres in the chiral limit

is about 3/4 the physical light quark mass; mres is approximately a factor of three smaller

on the fine MILC lattices, i.e. 1/4 the physical light quark mass. The small values of the

residual quark mass indicate that chiral symmetry breaking is under control in our mixed

action lattice simulations.

In order to reduce the number of fit parameters in our chiral and continuum extrapolation

of BK , we fix the value of mres in our chiral fits. We do not, however, use the values of mres

given in Table IV, which are found by taking the chiral limit (ml = mh = mx = 0) in both

the valence and sea sectors. Instead, for each lattice data point, we fix mres to the value

determined at that particular combination of valence and sea-quark masses. This effectively

includes higher order corrections to mres and improves the confidence levels of our chiral fits

to fπ and m2
π.

Because the mixed-action lattice theory has new four-fermion operators, the chiral effec-

tive theory has new low-energy constants due to discretization effects. It turns out, however,

that the mixed-action chiral Lagrangian has only one new constant at lowest order [22]. This

coefficient combines with coefficients coming from the taste-symmetry breaking operators in

the staggered sector [55] to produce an O(a2) shift to the mixed valence-sea meson mass-

squared:

m2
vs = µdw(mv +mres) + µstagms + a2∆mix, (48)
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where v is the domain-wall quark flavor, s is the staggered quark flavor, and ∆mix is the

effective mixed valence-sea meson mass-splitting obtained in lattice simulations.4 We have

calculated the value of ∆mix for the parameters of our mixed-action lattice simulations in

Ref. [17], and present the results in Table IV. We find that the size of ∆mix is less than half

of the taste-singlet staggered mass-splitting, ∆I , on both the coarse and fine MILC lattices.

We do not need to fix the value of ∆mix during the chiral and continuum extrapolation

of BK because it turns out that the parameter ∆mix does not enter the expression for BK

in MAχPT at NLO, Eq. (49) [9]. Although the mass-splitting enters the mixed-action

expression for fK , it cancels exactly at NLO between the numerator and denominator in the

ratio of matrix elements that defines BK , Eq. (2).

Finally, we note that, for the purpose of our chiral and continuum extrapolation of BK ,

it is useful to express the tree-level meson masses in terms of the bare lattice quark masses

given in Table I, not in terms of the renormalized quark masses. Because the valence and

sea quarks are renormalized according to different schemes, we absorb the scheme-dependent

quark-mass renormalization factors into separate coefficients of proportionality, µdw and

µstag, in the tree-level mass relations, Eqs. (46)–(48).

The NLO χPT expression for BK in a mixed-action domain-wall valence, staggered sea

theory with 2+1 flavors of dynamical sea quarks is [9]:

(
BK

B0

)PQ,2+1

= 1 +
1

16π2f 2
xym

2
xy

[
Iconn + I2+1

disc

]

+ c1a
2 +

8

f 2
xy

[
c2m

2
xy + c3

(m2
X −m2

Y )2

m2
xy

+ c4(2m
2
LP

+m2
HP

)

]
, (49)

where m2
X(Y ) is the mass-squared of a meson composed of two x(y) valence quarks and

m2
LP (HP ) is the mass-squared of a taste-pseudoscalar meson composed of two l(h) sea quarks.

The 1-loop chiral logarithms are separated into contributions from quark-level connected

and disconnected diagrams. The parameter B0 is the tree-level value of BK obtained in the

continuum and SU(3) chiral limits. The four analytic terms, c1 - c4, are the only additional

free parameters in the expression for BK at NLO. Although the analytic term proportional

4 The explicit expression for the effective mixed meson mass splitting ∆mix, given as a linear combination

of the staggered sea taste-splittings and the new splitting unique to the mixed action theory, is derived

in Ref. [55].
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to a2 is not present in the continuum, it is present for chiral lattice fermions. Thus BK in

the mixed-action theory, Eq. (49), has no more undetermined coefficients than in the purely

domain-wall case.

The connected contribution to BK is

Iconn = 2m4
xyℓ̃(m

2
xy) − ℓ(m2

X)(m2
X +m2

xy) − ℓ(m2
Y )(m2

Y +m2
xy). (50)

The chiral logarithms, ℓ and ℓ̃, are defined as

ℓ(m2) = m2

(
ln
m2

Λ2
χ

+ δFV
1 (mL)

)
, δFV

1 (mL) =
4

mL

∑

~r 6=0

K1(|~r|mL)

|~r|
, (51)

ℓ̃(m2) = −

(
ln
m2

Λ2
χ

+ 1

)
+ δFV

3 (mL) , δFV
3 (mL) = 2

∑

~r 6=0

K0(|~r|mL) , (52)

where the difference between the finite and infinite volume result is given by δFV
i (mL),

and K0 and K1 are modified Bessel functions of imaginary argument. The disconnected

contribution to BK is

I2+1
disc =

1

3
(m2

X −m2
Y )2 ∂

∂m2
X

∂

∂m2
Y

{
∑

j

ℓ(m2
j)
(
m2

xy +m2
j

)
R

[3,2]
j ({M

[3]
XY,I}; {µ

[2]
I })

}
, (53)

where

R
[n,k]
j ({m}, {µ}) ≡

∏k
a=1(µ

2
a −m2

j )∏n
i=1,i6=j(m

2
i −m2

j )
, (54)

{M
[3]
XY,I} ≡ {mX , mY , mηI

}, (55)

{µ
[2]
I } ≡ {mLI

, mHI
}. (56)

When the up and down sea quark masses are degenerate, the flavor-neutral, taste-singlet

mass eigenstates are

m2
π0

I
= m2

LI
,

m2
ηI

=
m2

LI

3
+

2m2
HI

3
. (57)

and the disconnected contribution to BK simplifies:

I2+1
disc =

1

3
(IX + IY + Iη) , (58)
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with

IX = ℓ̃(m2
X)

(m2
xy +m2

X)(m2
LI

−m2
X)(m2

HI
−m2

X)

(m2
ηI
−m2

X)

−ℓ(m2
X)

[
(m2

xy +m2
X)(m2

LI
−m2

X)(m2
HI

−m2
X)

(m2
ηI
−m2

X)2
+

2(m2
xy +m2

X)(m2
LI

−m2
X)(m2

HI
−m2

X)

(m2
Y −m2

X)(m2
ηI
−m2

X)

+
(m2

LI
−m2

X)(m2
HI

−m2
X) − (m2

xy +m2
X)(m2

HI
−m2

X) − (m2
xy +m2

X)(m2
LI

−m2
X)

(m2
ηI
−m2

X)

]
, (59)

IY = IX(X ↔ Y ), (60)

Iη = ℓ(m2
η)

(m2
X −m2

Y )2(m2
xy +m2

ηI
)(m2

LI
−m2

ηI
)(m2

HI
−m2

ηI
)

(m2
X −m2

ηI
)2(m2

Y −m2
ηI

)2
. (61)

All of the sea quark dependence in the chiral logarithms appears in the disconnected terms,

the sum of which vanishes for degenerate valence quark masses. The contribution Iη vanishes

identically when mX = mY . In the limit that mX → mY , IX → −IY . Thus the sum

IX + IY + Iη → 0.

B. Chiral and continuum extrapolation of BK

We use the SU(3) MAχPT formula of Eq. (49) in the extrapolation of our numerical

lattice data to the continuum and to physical quark masses. The choice of SU(3) χPT

is appropriate given the parameters of our numerical simulations because our light pion

masses range from 240-500 MeV and are not much lighter than the physical kaon, which is

integrated out in SU(2) χPT. Furthermore, the largest of the taste-splittings on the coarse

lattices is not much smaller than the kaon mass [a2∆I ≈ (460MeV)2], though on the fine

lattices it is a factor of 2.7 times smaller [a2∆I ≈ (280MeV)2].

The statistical errors on Blat
K are ∼ 0.5%−2% for most of our data points. It is now well-

established that NLO χPT does not describe quantities such as pseudoscalar masses, decay

constants, or BK to percent-level accuracy at the physical kaon mass, nor is it expected

to based on power counting. Our data set confirms this picture for BK . In order to get

good fits to our BK data in the region of interest we must include next-to-next-to-leading

order (NNLO) analytic terms. Fits without these terms give terrible correlated χ2/d.o.f.’s

and miniscule confidence levels. The two-loop NNLO logarithmic corrections, however, are

not known for BK . These expressions would also have to be modified to account for the
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TABLE V: Tree-level µ-parameters, defined in Eqs. (46)–(47), on the coarse and fine MILC lattices.

The staggered coefficient, r1µstag, is independent of the valence sector [7], while the domain-wall

coefficient, r1µdw, depends upon the choice of HYP-smearing [17].

a(fm) r1µstag r1µdw

0.12 6.234 4.13

0.09 6.382 3.83

staggered sea sector, though, given our experience with the one-loop modifications due to

the mixed action, this is likely a small effect. In the region where the NNLO analytic terms

that we have added are important, we expect the NNLO logarithms to vary slowly enough

that their effect is well approximated by the analytic terms. Even so, this somewhat ad hoc

treatment gives rise to our second largest systematic error in the determination of BMS
K .

There are six new continuum NNLO analytic terms, as well as NNLO terms that modify

the NLO constants c1-c4 by terms proportional to a2. We include only a subset of the

NNLO terms that are needed to obtain good correlated χ2 values, and include the others in

alternative fits for systematic error estimation. The number of new continuum low energy

constants can be constrained using CPS symmetry [56], chiral symmetry, and the fact that

there is only one mass scale in the tree-level diagrams with the external kaons at rest. The

new continuum analytic NNLO contributions to BK are

d1m
4
xy, d2(m

2
X −m2

Y )2, d3(2m
4
LP

+m4
HP

), d4(2m
2
LP

+m2
HP

)2,

d5(m
2
xy)(2m

2
LP

+m2
HP

), d6
(m2

X −m2
Y )2

m2
xy

(2m2
LP

+m2
HP

). (62)

We also test for higher order analytic terms proportional to a2. We find an improvement to

the fit when including a term of the form a2m2
xy.

Figure 10 shows our preferred fit to the data using NLO partially quenched MAχPT

supplemented by some of the above NNLO analytic terms. In order to obtain a fit with a good

correlated confidence level, we include the NNLO continuum analytic terms proportional to

d1, d2, d5 and d6 in Eq. (62) plus an NNLO analytic term containing discretization effects,

da2m2
xy

(8/f 2
xy)a

2m2
xy. We fix the following parameters in the fit: the tree-level (continuum)

coefficients µdw and µstag, the decay constant fxy, and the taste-splitting a2∆I . We take for
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FIG. 10: BK versus degenerate light valence quark mass r1(mx +mres) on different ensembles. The

fit lines are the same partially quenched contours as the data. Note that all of the coarse fit lines

lie on top of each other, and likewise for the fine, indicating very little sea quark dependence. The

band is the degenerate quark mass full QCD curve (mx = my = ml = mh) in the continuum limit.

The y-intercept of the full QCD curve gives the low-energy constant B0, which is the value of BK

in the SU(3) chiral limit.

the parameters µdw and µstag the values obtained from fits to the light pseudo-scalar masses

squared to the tree-level forms given in Eqs. (46) and (47). This accounts for higher-order

chiral corrections and is more accurate than using µ obtained in the chiral limit (which is

found by fitting to the one-loop pseudoscalar mass and decay constant expressions), giving

a better approximation to the pion mass squared at a given light quark mass. The values

for µdw and µstag are given in Table V. We take the decay constant fxy, which appears as

the inverse square in the coefficient of the chiral logarithms, to be the physical fK = 156.5

MeV [24] for our preferred fit, though we vary fxy in order to estimate the systematic error.

We use the value for the taste-singlet splitting a2∆I obtained by the MILC Collaboration in

Ref. [7] and given in Table IV. Given these choices, our preferred combined chiral-continuum
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FIG. 11: Comparison of higher order χPT corrections for BK . The rightmost point on the graph

corresponds to ∼ ms/2.

extrapolation fit function contains only ten free parameters.

Figure 10 shows only the degenerate valence mass points and the corresponding partially-

quenched fit lines, although the fit includes nondegenerate masses as well. The heaviest

valence kaon masses included in this fit are slightly larger than the physical kaon mass.

We restrict the degenerate valence “kaon” masses to below 500 MeV, but we allow slightly

heavier non-degenerate valence kaons up to masses of around 600 MeV in order to interpolate

about the physical strange quark mass. In the sea sector, we restrict the taste-pseudoscalar

pions to be less than 550 MeV on the coarse ensembles and less than 500 MeV on the fine

ensembles. Our lightest degenerate valence “kaon” is ∼ 230 MeV, while our lightest taste-

pseudoscalar sea pion is ∼ 240 MeV. Given these mass restrictions, the number of data

points in our preferred fit is 69, which is more than sufficient to constrain ten parameters.

Although most of our degenerate-mass data points are far from the physical kaon mass,

including this data in the fit allows us to constrain the parameters of the SU(3) chiral La-

grangian and to study the convergence of SU(3) χPT. The (cyan) band in Fig. 10 shows the

full QCD curve with statistical errors in the SU(3) (mx = my = ml = mh) and continuum
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limits that is obtained from our preferred fit. In order to examine the convergence of SU(3)

χPT, we plot the separate contributions to the degenerate SU(3) curve through LO, NLO,

and “all orders” in Fig. 11. The right-most part of the x-axis corresponds to ∼ ms/2 (i.e.,

a 500 MeV pion), where we do not expect χPT to be especially convergent. Because we

are interpolating in the quark mass in this region, we expect the “all orders” curve to be

accurate, with the NNLO terms approximating the correct higher order behavior. Closer to

the physical pion mass, however, the NLO contributions are the dominant corrections. We

find the results of our fits to be consistent with the expectations from chiral power-counting.

It would, nevertheless, be valuable to continue this study with the complete NNLO formula

once it is available. It should also be noted that the systematic error in the chiral extrapo-

lation to the SU(3) chiral limit is fairly large, since the simulated strange quark masses in

the sea are close to the physical value. Thus, there is a large systematic error in the value

of the leading order term B0, and the picture in Fig. 11 may change appreciably once we

can better constrain the approach to the SU(3) limit. Given the central value of our current

best fit, however, the convergence of the chiral expansion appears reasonable.

We obtain a value of BMS
K (2GeV) = 0.5273(64) from our preferred fit when the matching

factor is calculated using NPR, where the error is statistical only. We take this result as our

central value. For comparison, the value for BK obtained using lattice perturbation theory

to compute the matching factor is BMS
K (2GeV) = 0.541(6). The result of our preferred fit

is shown in Fig. 12. All data points used in the fit are shown. The upper band is the full

QCD continuum extrapolated curve with the strange quark fixed to its tuned value. The

lower band is the degenerate quark mass, full-QCD band, as in Fig. 10. The extrapolated

value of BK at the physical quark masses with statistical errors is shown as an “X” with

solid black error bars.

Table VI shows the low-energy constants determined in our preferred fit, with statistical

errors only. We do not attempt to estimate a systematic uncertainty in these parameters

because this is not necessary for determining BK at the physical quark masses. We expect

that the systematic uncertainties, however, will be large given the size of the extrapolation

to the SU (3) chiral limit. We present the values only to illustrate a few important points.

Discretization errors in our data are small; this can be seen from the size of the parameters

c1 and da2m2
xy

. Further, we do not observe any clear sea-quark mass dependence in our data,
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FIG. 12: BK versus light valence quark mass r1(mx + mres). All data points used in the fit (same

fit as in Fig. 10) are shown. The upper band is the full QCD continuum extrapolated curve with

the strange quark fixed to its tuned value. The lower band is the degenerate quark mass, full-QCD

band, as in Fig. 10. The extrapolated value of BK at the physical quark masses with statistical

errors is given by the “X” with solid black error bars.

as shown by the fact that c4, d5, and d6 are zero within errors. We estimate the systematic

uncertainty in BK due to the choice of chiral and continuum extrapolation fit function in

the following section.

V. SYSTEMATIC UNCERTAINTIES

In the following subsections, we examine the uncertainties in our calculation due to

the chiral/continuum extrapolation, scale and light quark mass uncertainties, finite volume

effects, and uncertainties in the matching factor ZBK
.
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TABLE VI: Fit parameters obtained in our preferred fit. Errors shown are statistical only, and do

not include the extrapolation uncertainty. The coefficient B0 in the top panel is the only leading-

order low-energy constant, the coefficients in the middle panel are the NLO low-energy constants,

and the coefficients in the bottom panel are the NNLO parameters included in the fit. Definitions

of the parameters are given in Eqs. (49) and (62).

B0 0.338(12)

c1 0.057(25)

c2 0.00531(60)

c3 0.00131(59)

c4 0.0003(15)

d1 0.351(23)

d2 -0.004(38)

d5 -0.006(27)

d6 0.006(35)

da2m2
xy

-0.00049(29)

A. Chiral and continuum extrapolation errors

We estimate the systematic error in the chiral extrapolation by varying the fit function

used to extrapolate the data over a variety of different reasonable choices and taking the

spread between them. By reasonable, we mean theoretically motivated fits that also describe

the data with good confidence levels, determined by the correlated χ2 per degree of freedom.

These fits always involve the known one-loop mixed action chiral logarithms, since including

them incorporates the leading non-analytic dependence on the light quark masses. (Note

that the chiral logarithms due to pion loops are common to SU(3) and SU(2) χPT, and

are the dominant non-analytic contribution when the strange quark is much heavier than

the two lightest quarks.) In order to get acceptable fits, we need to introduce polynomial

dependence in the valence quark mass at higher order than NLO in the chiral expansion.

We vary the additional types of polynomial terms beyond those needed to get acceptable

confidence levels and take the deviation as part of the systematic error. We also vary other
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assumptions, such as the values of parameters used in the prediction for the chiral logarithms,

and the lattice spacing dependence of the continuum extrapolation. Each of these variations

is addressed in turn.

We combine the chiral and continuum extrapolations using MAχPT to control the ap-

proach to physical light quark masses and to the continuum. Combining the data sets on

coarse and fine lattices, we have seven different valence quark masses and nine different sea

quark mass combinations. Our valence kaons range from around 600 MeV down to as light

as 230 MeV. These lighter kaons are useful for constraining the low energy constants of

the chiral Lagrangian. As can be seen in Fig. 11, even at the physical kaon mass near the

rightmost part of the plot, the chiral behavior is mostly accounted for by a combination of

leading order and NLO terms. The combinations of sea quark masses include values of the

simulated strange sea quark above and below the physical strange quark mass on both the

coarse and fine lattices, allowing us to interpolate in the strange sea quark mass.

The light sea quark masses used in our simulation are as low as ms/10, and this translates

into a taste-Goldstone pion (the lightest of the staggered pions) of around 240 MeV. In

the chiral extrapolation of BK , however, the only sea pion mass that appears in the NLO

MAχPT expression is the taste-singlet pion mass (the heaviest of the staggered pions), the

lightest of which in our simulations is still a rather heavy 370 MeV. Fortunately, the sea

quark contribution to the NLO chiral logarithms vanishes for degenerate valence quarks,

and gives only a small contribution for nondegenerate valence quarks (the region of interest

for the physical kaon). This is in part because the terms that contain the taste-singlet

pion are suppressed by a factor of 1/Nsea. Setting the staggered singlet taste-splitting to

zero amounts to using the continuum-like expression appropriate to a purely domain-wall

simulation; if we do this it shifts our chiral extrapolation to BK at the physical quark masses

by only 0.7%. Thus, the discretization effects particular to the use of staggered quarks in

the sea sector are small. We do not include this as part of the systematic error since using

MAχPT is the correct prescription, but we present it to illustrate how small the effect is.

As described in the previous subsection, we take as our central value the result of a fit that

includes all of the terms through NLO, the NNLO continuum analytic terms proportional

to d1, d2, d5 and d6 in Eq. (62), and an NNLO analytic term containing discretization effects

proportional to a2m2
xy. We estimate the systematic uncertainty due to the chiral extrapo-

lation by including additional NNLO analytic terms and taking the difference between the
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new value of BK and that obtained with the preferred fit. The largest contribution to the

systematic error comes from adding terms quadratic in the sea quark masses to the above

fit and taking the spread between the two. Although we analyze ensembles with different

light and strange sea quark masses, we do not observe any clear sea-quark mass dependence

in our data. When we include the terms proportional to d3 and d4 in Eq. (62) to our fit the

result shifts to 0.5175(72), yielding a difference of 1.9%. We take this as the error due to

approximating (or neglecting) higher order terms in the chiral expansion.

We also consider NNLO non-analytic terms of the generic form m2 log(m2) to estimate

higher order effects. A term of the form m4
X [log(m2

X/Λ
2
χ)] appears at NNLO [in both SU(2)

and SU(3) χPT], but it is subleading in the chiral expansion and should therefore have a

smaller impact than the terms that we are already including as mX approaches the physical

mπ. In order to test that the effects of such a term are indeed small, we added this term to

our preferred fit leaving its coefficient as a free parameter. We obtain a small coefficient for

such a term, which leads to a slight 0.9% shift upwards in our central value. This is within

our estimate of the error due to approximating higher order terms in the chiral expansion.

We consider other variations to the fit, but they lead to a much smaller shift in the

central value. Although we fix the tree-level (continuum) coefficients µdw and µstag, the

decay constant fxy, and the taste-splitting a2∆I in the NLO chiral extrapolation formula,

we vary them within their statistical uncertainties in order to estimate their contribution to

the error in BK . The staggered and domain-wall µtree parameters are well-determined, and

their error is negligible in BK . In the chiral fit used for our central value we take the decay

constant fxy, which appears as the inverse square in the coefficient of the chiral logarithms,

to be the physical fK . We vary this coefficient between fπ and fK as an additional way

of estimating higher order corrections. Note that a change in the coefficient of the chiral

logarithms will change the other fit parameters, so that this produces a much smaller effect

than simply changing the overall coefficient of the chiral logarithms in the final result by a

factor of (fK/fπ)
2 ∼ 1.4. The change of fxy from fK to fπ leads to a 0.1% shift in the value

for BK . The approximately 10% statistical error in a2∆I leads to a similarly negligible error

in BK .

Although we include terms proportional to a2 in the preferred fit, there is some ambiguity

(with only two lattice spacings) in the dominant source of discretization errors, which may

be purely a2 corrections, taste-breaking terms proportional to α2
sa

2, or chiral symmetry
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breaking terms proportional to mresa
2. It is also possible that the different sources lead

to discretization effects of the same size. We therefore vary the change in the effective a2

between coarse and fine lattice spacings, taking the resulting spread in the value of BK as

part of the systematic error. If discretization effects decrease as mresa
2 or as α2

sa
2 then they

should go down by about a factor of three from our coarse to fine lattices. If they decrease

as a2 they should decrease by about a factor of two. This difference leads to a 0.3% change

in the continuum extrapolated central value.

Figure 13 illustrates the chiral extrapolation error. This is the same fit as that shown

in Fig. 12, but with a subset of the data points. In this case the valence masses are non-

degenerate, with the heavier mass fixed close to the strange quark mass. The light quark

mass is the lightest simulated on each ensemble. The fit curve is the full QCD continuum

extrapolated curve with the strange quark fixed to its tuned value. We extrapolate the light

valence quark mass to the physical d quark mass, while we extrapolate the light sea quark

mass to the average of the u and d quark masses. The band shows the full QCD curve ending

at the full QCD d quark mass. The error bar is centered on the final result, which has a

small (not visible) shift due to setting the light sea quark mass equal to the isospin-averaged

quark mass. The extrapolated value of BK is shown, including the statistical error (solid

error bar with X) and the systematic error due to the chiral extrapolation, combined with

the statistical error in quadrature (dashed error bar). The dotted error bar (star, slightly

offset) shows the total error for BK including the matching error.

In summary, the largest source of chiral-continuum extrapolation error comes from un-

certainty in the sea quark mass dependence. The parametric uncertainty on quantities used

as inputs in the chiral logarithms is negligible, and the residual errors due to the lattice

spacing dependence in the continuum extrapolation are small. Adding the uncertainty due

to approximating higher order terms in the chiral expansion and the residual continuum

extrapolation error in quadrature, we quote a total systematic error due to the chiral and

continuum extrapolation of 1.9%.

B. Scale and quark mass uncertainties

In order to convert lattice quantities into physical units we use the MILC Collabora-

tion’s determination of the scale, r1, where r1 is related to the force between static quarks,
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FIG. 13: Same fit as Fig. 12, but with a subset of the data points for illustration. In this case, the

valence masses are nondegenerate, with the heavier mass fixed close to the strange quark mass.

The light-quark mass is the lightest simulated on each ensemble. The fit curve is the full QCD

continuum extrapolated curve with the strange quark fixed to its physical value. The extrapolated

value of BK is shown, including the statistical error (solid error bar with X) and the systematic

error due to the chiral extrapolation, combined with the statistical error in quadrature (dashed

error bar). The dotted error bar (star, slightly offset) shows the total error for BK .

r2
1F (r1) = 1.0 [33, 34]. The ratio r1/a can be calculated precisely on each ensemble from

the static quark potential. We use the mass-independent prescription for r1 described in

Ref. [24] so that all of the mass dependence is explicit in MAχPT and none is hidden in the

scale-fixing scheme. In order to fix the absolute lattice scale, one must compute a physical

quantity that can be compared directly to experiment; we use the Υ 2S–1S splitting [35] and

the most recent MILC determination of fπ [24]. The combination of the Υ mass-splitting

and the continuum-extrapolated r1 value at physical quark masses leads to the determina-

tion rphys
1 = 0.318(7) fm [36]. The use of fπ to set the scale yields rphys

1 = 0.3108(15)(+26
−79)

fm [24]. This difference between the two scale determinations leads to a systematic error in

our result for BK . Since BK is a dimensionless quantity, the scale enters only through the

quark mass determinations. We determine the light valence quark masses using MAχPT fits
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to the pseudoscalar masses and decay constants, as described in Ref. [23]. The sea-quark

masses are taken from the most recent update of the MILC pseudoscalar analysis [24].

MILC finds for the bare staggered quark masses in r1 units [24, 57]

r1m̂
stag × 103 = 3.78(16), (63)

r1m
stag
s × 103 = 102(4) , (64)

where m̂ ≡ (mu +md)/2. Although the masses are in dimensionless r1 units, they are scale

and scheme dependent quantities. The scheme, of course, is the improved staggered lattice

action used in the MILC simulations. The scale is the fine lattice scale of a−1 ∼ 2.3 GeV, but

with discretization effects removed by fits to multiple lattice spacings using rooted staggered

χPT. Both our fits and the MILC fits use as inputs from experiment the averaged meson

masses with electromagnetic effects removed as well as possible. We (and MILC) take for

the squared meson masses m2
bπ and m2

bK
,

m2
bπ ≡ m2

π0 , (65)

m2
bK
≡

1

2
(m2

K0 +m2
K+ − (1 + ∆E)(m2

π+ −m2
π0)),

where ∆E ≈ 1 parameterizes corrections to Dashen’s theorem.

We find from our mixed action chiral fits to the pseudoscalar sector the values for the

bare domain-wall quark masses (also evaluated at the fine lattice scale)

r1m̂× 103 = 5.87(8)(41), (66)

r1ms × 103 = 168(2)(8), (67)

where the first error is statistical and the second is systematic. Following MILC, we also

obtain the masses of the two lightest quarks. Given ms, we can obtain mu by extrapolating

not to the mass of the K̂ but to the mass of the K+ (with EM effects removed). We take

(m2
K+)QCD ≡ m2

K+ − (1 + δE)(m2
π+ −m2

π0), (68)

where δE = 1, which corresponds to vanishing EM corrections to the K0 mass. We then

obtain

r1mu × 103 = 3.7(22)(7), (69)

r1md × 103 = 8.0(27)(7), (70)
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where again the first error is statistical and the second is systematic.

It is useful to observe for our BK error analysis that the systematic error for the domain-

wall ms is dominated by the scale error. However, the error in md (needed since a kaon

is an sd state) is dominated by statistical uncertainty. Thus we can treat the errors from

the s and d quark masses as uncorrelated. Note that all of the above masses are the bare

lattice masses, so no error has been included for the renormalization needed to match to

a continuum scheme like MS. The bare quark masses are sufficient for the purpose of

calculating BK . The error in r1ms leads to an 0.8% uncertainty in BK , while the error in

r1md leads to an 0.2% error in BK . The errors in the sea quark masses produce a negligible

uncertainty in BK . Combining these errors in quadrature we obtain an error due to scale

and quark mass uncertainties for BK of 0.8%.

C. Finite volume error

The finite volume error is estimated using one-loop finite volume MAχPT [9]. We have

simulated at fairly large volumes, such that mπL ∼> 3.5, and we have corrected our data

using the appropriate one-loop MAχPT expressions, which are never larger than 0.6%.

There could still be non-negligible residual finite volume corrections, however, as numerical

studies by the MILC collaboration of fπ and m2
π show that the one-loop χPT corrections

can be off by as much as 50% for similar simulation parameters using staggered quarks [24].

Even so, given that the largest finite-volume correction to any individual data point in our

analysis is 0.6%, we expect the residual corrections to be only as much as 0.3%. However,

in order to be conservative, we take the entire 0.6% as our total finite volume error.

D. Renormalization factor uncertainty

In this section we estimate the systematic uncertainty in BK due to the nonperturbative

determination of the renormalization factor ZBK
. We consider several sources, discussing

each in turn.
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1. Chiral extrapolation fit ansatz

In order to remove explicit chiral symmetry breaking contributions to ZBK
from operators

such as those in Eq. (37), we first extrapolate Z
RI/MOM
BK

to the chiral limit at fixed values

of (ap)2. Although we choose to use a fit function that is linear in the light sea quark

mass and quadratic in the valence quark mass, we can obtain an equally good correlated

confidence level using a fit function with even more terms. We must therefore consider the

systematic uncertainty introduced by the choice of chiral extrapolation fit ansatz. We do so

by adding a quadratic term in the light sea quark mass to the fit function and re-doing the

chiral extrapolation at each value of (ap)2. We then re-compute ZMS
BK

(2 GeV) and take the

difference between this result and the central value to be the systematic error. This leads

to an uncertainty in ZMS,coarse
BK

(2 GeV) of 0.0063, or ∼ 0.7%, on the coarse lattice and an

uncertainty of 0.0111, or ∼ 1.2%, on the fine lattice. The addition of yet another term cubic

in the valence quark mass produces a negligible difference in ZBK
. We take the larger, 1.2%

difference, to be the uncertainty in ZBK
from the choice of chiral extrapolation fit function.

2. Strange sea-quark mass dependence

When we extrapolate Z
RI/MOM
BK

to the chiral limit at fixed values of (ap)2, we do not, in

fact, take the value of the strange sea quark mass to zero. This is because, within statistical

errors, ZBK
is independent of the strange sea quark mass. We can explicitly calculate the

strange sea-quark mass dependence, however, by taking the chiral limit of Z
RI/MOM
BK

at fixed

(ap)2 using a function that is linear in the sum of the sea quark masses and quadratic in the

valence quark mass on the coarse lattices, so we make the replacement 2ml → (2ml +mh) in

Eq. (43). We find that this leads to a difference in ZMS,coarse
BK

(2 GeV) of 0.0027, or ∼ 0.3%,

and take this to be the uncertainty in ZBK
due to the nonzero strange sea quark mass.

3. ΛA − ΛV 6= 0

The use of exceptional kinematics in our nonperturbative renormalization factor calcu-

lation leads to a difference between ΛA and ΛV of ∼ 1% at nonzero quark masses and

p ≈ 2 GeV. This is shown in Figs. 3 and 4. Because we do not know a priori which of the

two quantities has less contamination from chiral symmetry breaking, we use the average
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(ΛA + ΛV )/2 to determine the central value for ZBK
. In order to estimate the systematic

uncertainty that is introduced by this choice, we also calculate ZBK
using ΛA for the normal-

ization. This leads to a difference in ZMS,coarse
BK

(2 GeV) of 0.0084, or ∼ 0.9%, on the coarse

lattice and a difference of 0.0112, or ∼ 1.2%, on the fine lattice. We take the larger, 1.2%

difference, to be the uncertainty in ZBK
due to chiral symmetry breaking between ΛA and

ΛV .

4. Mixing with wrong-chirality operators

The use of exceptional kinematics also leads to mixing between the standard model

operator OK , which has a V V + AA chiral structure, and other operators of different chi-

ralities that do not contribute to K0 − K
0

mixing in the standard model. Although the

size of the mixing coefficents, shown in Figs. 15–18, are small, the matrix elements for

the wrong-chirality operators diverge in the chiral limit and are much larger than the de-

sired matrix element [48]. Thus a small mixing coefficient can still potentially lead to a

non-negligible error in ZBK
. Fortunately, we can bypass this concern by computing the

mixing coefficients at non-exceptional kinematics. Theoretically, we expect their size to be

of O((amres)
2) ∼ 10−6 [49, 52]. Numerically, we find that all of the mixing coefficients are

consistent with zero on both the coarse and fine lattices, as shown in Figs. 19–26. Because

the contribution to BK in the MS scheme from each wrong-chirality lattice operator is in-

dependent of the lattice scheme initially used to obtain the mixing coefficients, we conclude

it is safe to neglect them in our calculation of ZBK
, despite the fact that we are using ex-

ceptional kinematics. We therefore do not add any systematic uncertainty to ZBK
due to

operator-mixing.

5. Perturbative matching and running

Although we compute ZBK
in the RI/MOM scheme nonperturbatively, we must still

convert its value to the SI scheme to remove lattice discretization effects and ultimately to

the MS scheme using 1-loop continuum perturbation theory. This introduces uncertainty

into BK due to the omission of higher-order terms. Because the true truncation error cannot

be known without the computation of the next term in the perturbative series, we consider
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several ways to estimate the uncertainty here.

The first is to multiply the largest individual 1-loop conversion that is used by an ad-

ditional factor of αMS
s . We determine ZBK

from data in the momentum window 2 GeV ∼<

p ∼< 2.5 GeV; thus the largest value of αMS
s (p) used is that at 2 GeV. The largest correction

comes from the conversion between the RI/MOM scheme and the SI scheme, and leads to

the following estimate of the truncation error:

αMS
s (2 GeV) ×

αMS
s (2 GeV)

4π
J

(3)
RI/MOM = 0.0188, (71)

or ∼ 2%.

The second is to take the size of the entire 1-loop correction from the RI/MOM scheme

to the SI scheme to the MS scheme:

αMS
s (2 GeV)

4π
(J

(3)
RI/MOM − J

(3)

MS
) = 0.0204, (72)

which also leads to an estimate of ∼ 2%. Because the conversion factors, however, are only

known to 1-loop, they are particularly sensitive to the scale at which they are evaluated.

We did not attempt to determine an optimal scale for the process, for example using the

BLM prescription [44], and must therefore estimate the error due to scale ambiguity. The

standard, although somewhat arbitrary, prescription used in the continuum literature is to

take the variation in the quantity when the scale µ is varied between 2µ and µ/2. For our

case, this leads to the estimates

αMS
s (4 GeV)

4π
(J

(3)
RI/MOM − J

(3)

MS
) = 0.0152, (73)

αMS
s (1 GeV)

4π
(J

(3)
RI/MOM − J

(3)

MS
) = 0.0327. (74)

Thus, the 1-loop correction can be as large as ∼ 3%, if we use a scale of 1 GeV.

Finally, the third is to take the difference between ZBK
determined using the nonpertur-

bative Rome-Southampton approach and using lattice perturbation theory. Each method

for computing ZBK
relies on 1-loop perturbation theory, but involves a different series ex-

pansion, so one does not know a priori which leads to a faster converging series and smaller

truncation error. Thus having two independent calculations of ZBK
provides a valuable in-

dependent crosscheck. To estimate the error, we replace the values of ZBK
determined using

nonperturbative renormalization with those from lattice perturbation theory and repeat the
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TABLE VII: Error contributions to BK from the nonperturbative renormalization procedure. Each

source of uncertainty is discussed in Sec. V D, and is given as a percentage of BK .

uncertainty ZBK

statistics 0.7%

chiral extrapolation fit function 1.2%

strange quark mass dependence 0.3%

chiral symmetry breaking 1.2%

perturbation theory 2.7%

total 3.3%

extrapolation to the physical quark masses and the continuum. We then take the difference

between the resulting BK and our preferred central value:

|BNPR
K − BLPT

K |/BNPR
K = 0.027, (75)

which is ∼ 3%. This is comparable to, but slightly smaller than, the estimate from the scale

ambiguity. Nevertheless, we think that it is a more reasonable estimate of the uncertainty,

given that it comes from two independent perturbative computations. We therefore take

2.7% to be the uncertainty in ZBK
due to the use of 1-loop perturbation theory.

6. Total uncertainty in ZBK

We summarize the contributions to the “renormalization factor” uncertainty in BK in

Table VII and add them in quadrature. The ∼ 2.7% error due to the use of perturbation

theory is the largest single contribution to the total error in BK , and can only be reduced

by a calculation of the necessary matching factors at 2-loops.

VI. RESULT AND CONCLUSIONS

We obtain the following result for BK in the MS scheme at 2 GeV:

BMS
K (2 GeV) = 0.527(6)(10)(4)(3)(17), (76)

49



TABLE VIII: Total error budget for BK . Each source of uncertainty is discussed in Sec. V, and is

given as a percentage of BK .

uncertainty BK

statistics 1.2%

chiral & continuum extrapolation 1.9%

scale and quark mass uncertainties 0.8%

finite volume errors 0.6%

renormalization factor 3.3%

total 4.1%

where the errors are from statistics, the chiral-continuum extrapolation, scale and quark mass

uncertainties, finite volume errors, and the renormalization factor uncertainty, respectively.

The total error is ∼ 4%, and the error budget is presented in Table VIII. It is often more

convenient to use the scale-invariant parameter B̂K in new physics analyses, for which we

find the value

B̂K = 0.724(8)(28). (77)

Our 2+1 flavor lattice QCD calculation of BK is the first to have all lattice sources of

systematic uncertainty under control. The largest errors in our result for BK come from the

chiral-continuum extrapolation (1.9%) and from the determination of the renormalization

factor (3.3%). The former can be improved by the addition of statistics and the use of more

lattice spacings. The MILC collaboration has generated ensembles with a lattice spacing

of a ≈ 0.06 fm which we plan to analyze in the near future. A calculation of the 2-loop

continuum perturbation theory formulae needed to match ZBK
in the RI/MOM scheme to

ZBK
in the MS scheme is critical, however, for a more reliable estimate of the truncation

error. Although we hope that the 2-loop expression confirms that our error estimate is

reasonable, it may turn out that the size of the 1-loop term is anomalously small and the

2-loop coefficient is unexpectedly large. Because the use of domain-wall valence quarks and

staggered sea quarks allows us to control the remaining sources of uncertainty quite well,

the error in BK from all sources except the renormalization error is only 2.5%. Thus, if the

use of 2-loop continuum perturbation theory does reduce the matching error, we can obtain
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an even more precise determination of BK without making any further improvements to the

lattice calculation.

Our result is consistent with the determination by the RBC and UKQCD Collaborations

using 2+1 flavors of domain-wall fermions, B̂K = 0.720(13)(37) [3], but our result has a

smaller total error. The largest error in the RBC/UKQCD calculation is the 4% scaling

uncertainty due to the use of only a single lattice spacing, which we reduce by using two

lattice spacings. Our result also has smaller statistical errors because of the large number

of available staggered gauge configurations. Our result has comparable matching errors to

RBC/UKQCD because the dominant error in both calculations of ZBK
is from the use of

precisely the same one-loop continuum perturbation theory results when converting from

the RI-MOM scheme to the MS scheme. We are slightly more conservative, however, in our

error estimate because we take the difference between the renormalization factors determined

using NPR and using lattice perturbation theory to be the error due to the omission of

higher-order terms.

Our result is 1.9-σ lower than the value currently preferred by the global unitarity triangle

analysis, B̂K = 0.92 ± 0.10 [58], which comes from an update of the work of Lunghi and

Soni in Ref. [59] using the latest determinations of all of the input parameters. The tension

with the standard model is enhanced by the inclusion of the correction factor κǫ derived by

Buras and Guadagnoli [60, 61], which raises the location of the ǫK band. The uncertainty

in the standard model constraint on B̂K is ∼11% . This is largely due to the error in the

CKM matrix element |Vcb|, which is known to ∼ 2% accuracy, but enters the constraint from

BK on the unitarity triangle as the fourth power. Thus the error in |Vcb| must be reduced

in order to maximize the constraint on new physics from neutral kaon mixing. Fortunately

work on improving the exclusive determination of |Vcb| is ongoing by the Fermilab Lattice

and MILC collaborations [62], and work on improving the inclusive determination of |Vcb| is

in progress by Becher and Lunghi [63].

Lattice QCD calculations of the hadronic weak matrix element BK that incorporate the

effects of the dynamical up, down, and strange quarks can now reliably control all sources of

uncertainty. Because our result for BK is consistent with the determination of the RBC and

UKQCD Collaborations, one can safely average the two values (taking correlations between

systematic errors into account) for use in future unitarity triangle analyses. There is already

a hint of the presence of new physics in the quark flavor sector as indicated by the tension
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between the unitarity triangle constraints from ǫK and sin(2β) [59]. We expect the errors

in both lattice QCD calculations of BK to be reduced in the future, such that indirect

CP -violation in the kaon system will play a valuable role in the search for new physics.
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APPENDIX A: FEYNMAN RULES FOR LATTICE PERTURBATION THEORY

In this appendix we present the Feynman rules and the integrals needed to calculate

ZBK
to one-loop in lattice perturbation theory with a Symanzik-improved gauge action and

HYP-smeared domain wall quarks.
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1. Gluon propagator

The gluon propagator for the Symanzik-improved gauge action used by the MILC Col-

laboration is

Dµν(k) = (k̂2)−2

[
(1 − Aµν)k̂µk̂ν + δµν

∑

σ

k̂2
σAνσ

]
− (1 − α)

k̂µk̂ν

(k̂2)2
, (A1)

where

Aµν(k) = Aνµ(k) = (1 − δµν)∆(k)−1

[
(k̂2)2 − c1k̂

2

(
2
∑

ρ

k̂4
ρ + k̂2

∑

ρ6=µ,ν

k̂2
ρ

)

+c21

(
(
∑

ρ

k̂4
ρ)

2 + k̂2
∑

ρ

k̂4
ρ

∑

τ 6=µ,ν

k̂2
τ + (k̂2)2

∏

ρ6=µ,ν

k̂2
ρ

)]
, (A2)

∆(k) =

(
k̂2 − c1

∑

ρ

k̂4
ρ

)[
k̂2 − c1

(
(k̂2)2 +

∑

τ

k̂4
τ

)

+
1

2
c21

(
(k̂2)3 + 2

∑

τ

k̂6
τ − k̂2

∑

τ

k̂4
τ

)]
− 4c31

∑

ρ

k̂4
ρ

∏

τ 6=ρ

k̂2
τ , (A3)

with c1 = − 1
12u2

0

, (u0 is the fourth root of the plaquette) and

k̂µ = 2 sin
kµ

2
, k̂2 =

∑

µ

k̂2
µ (A4)

Without loss of generality, we adopt the Feynman gauge α = 1. The above propagator is

that of the tree-level (tadpole) improved gauge action [64, 65]. The gluon propagator in the

improved case is significantly more complicated then that from the Wilson plaquette gauge

action, where Aplaquette
µν = 1− δµν . The action used in the generation of the MILC ensembles

is further improved through 1-loop, but this additional improvement introduces corrections

of higher order than 1-loop in ZBK
, and is not needed here.

2. Domain wall propagator

For the domain-wall propagator, we make use of the results of Ref. [43]. There are three

types of domain-wall quark propagators. The first connects general flavor indices:

S(p)st =
N∑

u=1

(−iγµ sin pµ +W− +mM−)su GR(u, t)PR

+

N∑

u=1

(−iγµ sin pµ +W+ +mM+)su GL(u, t)PL, (A5)
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where PR,L = (1 ± γ5)/2 are projection matrices, s, t, and u are flavor indices, the mass

matrices are

W+ =




−W 1

−W ...

... 1

−W



, W− =




−W

1 −W

... ...

1 −W



, (A6)

M+ =




1


 , M− =


 1


 , (A7)

and GR,L are

GR(s, t) =
A

F
[−(1 −m2)(1 −We−α)eα(−2N+s+t) − (1 −m2)(1 −Weα)e−α(s+t)

−2W sinh(α)(eα(−N+s−t) + eα(−N−s+t))] + Ae−α|s−t|, (A8)

GL(s, t) =
A

F
[−(1 −m2)(1 −Weα)eα(−2N+s+t−2) − (1 −m2)(1 −We−α)eα(−s−t+2)

−2W sinh(α)(eα(−N+s−t) + eα(−N−s+t))] + Ae−α|s−t|, (A9)

cosh(α) =
1 +W 2 +

∑
µ sin2 pµ

2W
, (A10)

A =
1

2W sinh(α)
, (A11)

F = 1 − eαW −m2(1 −We−α), (A12)

W = 1 −M5 +
∑

µ

(1 − cos pµ). (A13)

In these formulas m is the domain-wall quark mass, and M5 is the domain-wall height. N

is the number of sites in the fifth dimension, i.e. the number of generalized flavors.

The second propagator connects the physical quark field q with the fermion field of general

flavor index,

〈q(p)ψ(−p, s)〉 =
1

F
(iγµ sin pµ −m(1 −We−α))(e−α(N−s)PR + e−α(s−1)PL)

+
1

F
[m(iγµ sin pµ −m(1 −We−α)) − F ]e−α(e−α(s−1)PR + e−α(N−s)PL),

(A14)

〈ψ(p, s)q(−p)〉 =
1

F
(e−α(N−s)PL + e−α(s−1)PR)(iγµ sin pµ −m(1 −We−α))

+
1

F
(e−α(s−1)PL + e−α(N−s)PR)e−α[m(iγµ sin pµ −m(1 −We−α)) − F ].

(A15)
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The third propagator is that of the physical quark field

Sq(p) ≡ 〈q(p)q(−p)〉 =
−iγµ sin pµ + (1 −We−α)m

−(1 − eαW ) +m2(1 −We−α)
, (A16)

which reduces in the continuum limit to

Sq(p) =
(1 − w2

0)

i 6p + (1 − w2
0)m

, (A17)

where w0 = 1 −M5.

The following form of the propagators, where we perform the sum over generalized flavor

indices, is useful for evaluating the vertex diagrams needed to renormalize BK [43],

SLq(p) ≡
N∑

s=1

L(s)〈ψ(p, s)q(−p)〉 =

(
e−α

F (1 − w0e−α)

)
(imγµ sin pµ − (1 −Weα)) , (A18)

SqR(p) ≡
∞∑

s=1

〈q(p)ψ(−p, s)〉R(s) = SLq(p), (A19)

SqL(p) ≡

N∑

s=1

〈q(p)ψ(−p, s)〉L(s) =
1

1 − w0e−α

1

F

(
iγµ sin pµ −m(1 −We−α)

)
, (A20)

SRq(p) ≡

∞∑

s=1

R(s)〈ψ(p, s)q(−p)〉 = SqL(p). (A21)

with

L(s) = (w
(N−s)
0 PR + w

(s−1)
0 PL), (A22)

R(s) = (w
(s−1)
0 PR + w

(N−s)
0 PL), (A23)

where in the rightmost expressions we take the limit that the number of lattice sites in the

fifth dimension N is infinite. In principle, this limit should be taken after the momentum

integral, but there is no difficulty with taking the limit first. We use the mean-field improved

value MMF
5 = M5 − 4(1 − u0) throughout the perturbative calculation, as discussed in

subsection IIIA.

3. Quark gluon vertices

The quark gluon interaction vertices are [43]

V a
1µ(k, p)st = V a

1µ(k, p)δst = −igT a
(
γµV 1µ(k, p) + Ṽ1µ(k, p)

)
δst, (A24)

V ab
2µν(k, p)st = V ab

2µν(k, p)δst =
1

2
g21

2
{T a, T b}

(
γµṼ1µ(k, p) + V 1µ(k, p)

)
δµνδst, (A25)
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where g is the coupling constant, T a are the SU(3) generators, and

V 1µ(k, p) = cos
1

2
(−kµ + pµ), (A26)

Ṽ1µ(k, p) = i sin
1

2
(−kµ + pµ). (A27)

To account for the HYP-smearing of the valence quarks to the order we are working,

the vertices must be modified by a form factor hµν . Since all gluons begin and end on

fermion lines, the gluon propagator gets replaced by a more complicated propagator Dµν →

hµλDλσhνσ. The form factor is [66]

hµλ = δµλDλ + (1 − δµλ)Gµλ, (A28)

where

Dλ = 1 − d1

∑

ν 6=λ

s2
ν + d2

∑

ν<ρ
ν,ρ6=λ

s2
νs

2
ρ − d3s

2
νs

2
ρs

2
σ, (A29)

Gµλ = sµsλG̃µλ(k), (A30)

G̃µλ(k) = d1 − d2

s2
ρ + s2

σ

2
+ d3

s2
ρs

2
σ

3
, (A31)

and sµ = sin kµ

2
. In Eqs. (A29)-(A31), the indices µ, λ, ρ and σ are all different. The

coefficients di are defined by

d1 =
2

3
α1(1 + α2(1 + α3)), d2 =

4

3
α1α2(1 + 2α3), d3 = 8α1α2α3, (A32)

where we take in our simulations the standard Hasenfratz et al. values α1 = 0.75, α2 = 0.6,

α3 = 0.3 [31].

4. Renormalization factor ZBK

The 4-quark operator renormalization needed for BK through one-loop can be written in

terms of integrals that appear in the renormalization of bilinear operators. We thus calculate

the renormalization factors for the quark bilinear operators O = qΓq. The bilinear operator

gets renormalized in the MS scheme according to

OMS
Γ (µ) = (1 − w2

0)
−1Z−1

w u0ZΓ(µa)Olat
Γ (1/a), (A33)
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where Zw renormalizes the domain-wall height. It is convenient to define the quark wave-

function renormalization factor Z2 implicitly via the relation

qMS = (1 − w0)
−1/2Z−1/2

w (u0Z2)
1/2qlat. (A34)

Using the Feynman rules presented in the previous sub-sections, we then have for the vertex

correction to the bilinear operator in the MS, NDR scheme [43]

ZΓ

Z2
= 1 +

g2CF

16π2

[
AΓ ln(µa)2 + AΓ(1 − ln π2) +BΓ − 16π2IΓ

]
, (A35)

with

AΓ =
h2(Γ)

4
, BΓ = −

h2(Γ)

4
+ V MS

Γ , (A36)

where h2(Γ) = 4(V,A), 16(P, S), 0(T ); V MS
Γ = −1/2(V,A), 2(P, S), 0(T ); and IΓ is a finite

lattice integral,

IΓ =
1

4g2CF

∫

k

{
∑

s,t

Tr
[
L(s)V1µ(0, k)〈ψ(k, s)q(−k)〉Γ〈q(k)ψ(−k, t)〉V1ν(−k, 0)R(t)Γ†

]

× hµλ(k)Dλσ(k)hνσ(k) − 4g2CFAΓ
θ(π2 − k2)

(k2)2

}
, (A37)

with the trace over Dirac spin and

∫

k

≡

∫
d4k

(2π)4
(A38)

The last term in Eq. (A37) subtracts an IR (infrared) divergence from the integral. By

chiral symmetry, the renormalization factors for the vector and axial-vector currents are

equal; the renormalization factors for scalar and pseudoscalar currents are also equal by

chiral symmetry [41]. The Feynman diagram for the vertex correction is given in Fig. 14.

The renormalization factor matching the lattice calculation of BK to the MS scheme can

be written [43]

ZBK
(µa) =

(1 − w2
0)

−2Z−2
w Z+(µa)

(1 − w2
0)

−2Z−2
w ZA(µa)2

=
Z+(µa)

ZA(µa)2
, (A39)

where Z+ is the renormalization factor for the operator O∆S=2
K , and ZA renormalizes the axial

current. It is useful to define BK in this way, since the tadpole and self-energy corrections

cancel. The renormalization factor contains the running of the operator from the lattice
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qΓq

k

k k

q q

ψsψs ψtψt

p = 0 p′ = 0

FIG. 14: Vertex diagram for the correction to bilinear operators in lattice perturbation theory.

scale a−1 to the continuum scale µ. In the MS scheme with naive dimensional regularization

(NDR), we obtain [43]

ZMS,NDR
BK

(µa) = 1 +
αs

4π

[
−4 ln(µa) + zMS,NDR

BK

]
, (A40)

where

zMS,NDR
BK

= −
11

3
+ 2 lnπ2 +

2

3
(16π2)(IS − IV ), (A41)

with IS,V defined in Eq. (A37).

APPENDIX B: MATCHING SCHEME AND PERTURBATIVE RUNNING FOR

ZBK

Although the functions used to convert the renormalization factor ZBK
from the RI/MOM

scheme to the MS scheme are the same as those shown in the appendices of Ref. [49], we

display them here for completeness.

1. The QCD β-function in the MS scheme

In this work we calculate the value of the coupling constant αMS
s (µ) at any scale using

the four-loop (NNNLO) running formula of Ref. [67]:

∂

∂ lnµ2

(αs

π

)
= β (αs)

= −β0

(αs

π

)2

− β1

(αs

π

)3

− β2

(αs

π

)4

− β3

(αs

π

)5

+ O
(
α6

s

)
, (B1)
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where

β0 =
1

4

(
11 −

2

3
nf

)
,

β1 =
1

16

(
102 −

38

3
nf

)
,

β2 =
1

64

(
2857

2
−

5033

18
nf +

325

54
n2

f

)
,

β3 =
1

256

[
149753

6
+ 3564ζ3 −

(
1078361

162
+

6508

27
ζ3

)
nf

+

(
50065

162
+

6472

81
ζ3

)
n2

f +
1093

729
n3

f

]
, (B2)

We implement this numerically by starting with the world average of the strong coupling

constant at the Z-boson mass [68],

α(5)
s (mZ) = 0.1176 ± 0.0020 , (B3)

where the superscript indicates that this is determined in the region with five active quark

flavors. We then run αs below the bottom and charm quark thresholds imposing the match-

ing conditions

α(5)
s (mb) = α(4)

s (mb) and α(4)
s (mc) = α(3)

s (mc) . (B4)

in order to determine α
(3)
s (µ) at any scale in the 3-flavor theory.

2. Perturbative Running and Scheme Matching for ZBK

We convert the renormalization factor ZBK
between the scale-invariant, MS, and

RI/MOM schemes using the one-loop renormalization group running formulae with nf =

3 [69]:

ZSI
BK

(nf ) = w−1
scheme (µ, nf)Z

scheme
BK

(µ, nf) , (B5)

where

w−1
scheme (µ, nf) = αMS

s (µ)−γ0/2β0

[
1 +

αMS
s (µ)

4π
J
(nf)
scheme

]
(B6)

and

J
(nf)
RI/MOM = −

17397 − 2070nf + 104n2
f

6 (33 − 2nf)
2 + 8 ln 2 , (B7)

J
(nf)
MS

=
13095 − 1626nf + 8n2

f

6 (33 − 2nf)
2 . (B8)
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APPENDIX C: NON-PERTURBATIVE MIXING COEFFICIENTS

In this appendix we present results for the mixing coefficients between the operator OK

and other lattice operators of different chiralities. We compute them nonperturbatively

using the method of Rome-Southampton as discussed in Sec. III B 1.

The renormalized operator that contributes toBK in the continuum, which has a V V+AA

chiral structure, receives contributions from several lattice operators:

Oren
K =

∑

i

ZV V +AA,i O
0
i , (C1)

where i ∈ {V V + AA, V V − AA, SS − PP, SS + PP, TT}. Because the operator mixings

require two flips of chirality, the off-diagonal coefficients are suppressed by O((amres)
2) [49,

52], which is ∼ 10−6 on the coarse lattice and even smaller on the fine lattice. We therefore

expect the contributions to BK from wrong-chirality lattice operators to be negligible.

In practice, however, we find that the mixing coefficients are not of O((amres)
2) when we

compute them using exceptional kinematics. This is because the choice of external momenta

in the renormalization factor calculation leads to additional chiral symmetry breaking, as

discussed in section IIIB 2. Figures 15–18 show the mixing coefficients as a function of (ap)2

for five valence quark masses on the aml/amh = 0.007/0.05 coarse ensemble and in the

chiral limit. At p ≈ 2GeV, the mixing coefficients are still all quite small compared to ZBK
.

The largest is the mixing of OK with the V V − AA operator, which is ∼ 0.01. We observe

coefficients of approximately the same size on the fine lattice, since this effect is not due to

the lattice spacing or residual quark mass.

Although the size of the mixing coefficients as computed with exceptional kinematics

are not negligible, the results are contaminated by chiral symmetry breaking effects and

are potentially unreliable. We therefore repeat the mixing coefficient calculation using non-

exceptional kinematics. The results are shown for the coarse lattice in Figs. 19–22 and for the

fine lattice in Figs. 23–26. Although the mixing coefficients determined with non-exceptional

kinematics have larger statistical errors, their values are smaller than when determined with

exceptional kinematics. Furthermore, the new mixing coefficients are consistent with zero in

the chiral limit. This confirms the hypothesis that the source of the large mixing coefficients

is simply the choice of non-exceptional kinematics, and that the sizes of the true mixing

coefficients are consistent with theoretical estimates.
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FIG. 15: Mixing coefficient ZV V +AA,V V −AA versus (ap)2 at several valence quark masses on the

aml/amh = 0.007/0.05 coarse ensemble. The stars indicate the value of the mixing coefficient in

the limit that the valence quark mass and the light sea quark mass go to zero.

Although we find that the mixing coefficients are consistent with zero in the RI/MOM

scheme using non-exceptional kinematics, we can still use this information to aid in our

determination of ZBK
using exceptional kinematics. This is because, ultimately, irrespective

of the lattice scheme used to obtain the mixing coefficients, one must obtain the same mixing

coefficients once the results are converted to the MS scheme. A vanishing contribution to

BK from a particular operator in the RI/MOM scheme with non-exceptional kinematics

implies a vanishing contribution in the MS scheme, since they are related multiplicatively.

Generically, once an operator’s contribution is zero in any scheme, its contribution is zero

in all schemes that are multiplicatively related. Note, however, that once an operator’s
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FIG. 16: Mixing coefficient ZV V +AA,SS−PP versus (ap)2 at several valence quark masses on the

aml/amh = 0.007/0.05 coarse ensemble.

contribution is nonzero, its particular value is scheme-dependent.
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FIG. 23: Mixing coefficient ZV V +AA,V V −AA versus (ap)2 at several valence quark masses on the

aml/amh = 0.0062/0.031 fine ensemble, using non-exceptional kinematics. The stars indicate the

value of the mixing coefficient in the limit that the valence quark mass and the light sea quark

mass go to zero.
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FIG. 24: Mixing coefficient ZV V +AA,SS−PP versus (ap)2 at several valence quark masses on the

aml/amh = 0.0062/0.031 fine ensemble, using non-exceptional kinematics.
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FIG. 25: Mixing coefficient ZV V +AA,SS+PP versus (ap)2 at several valence quark masses on the

aml/amh = 0.0062/0.031 fine ensemble, using non-exceptional kinematics.
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FIG. 26: Mixing coefficient ZV V +AA,TT versus (ap)2 at several valence quark masses on the

aml/amh = 0.0062/0.031 fine ensemble, using non-exceptional kinematics.
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